File size: 7,495 Bytes
42310ef 00c0329 42310ef 00c0329 9d96bb5 00c0329 42310ef 00c0329 42310ef 00c0329 42310ef 00c0329 42310ef 00c0329 42310ef 00c0329 42310ef 00c0329 42310ef 00c0329 42310ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import argparse
import yaml
import tqdm
import numpy as np
import cv2 as cv
from models import MODELS
parser = argparse.ArgumentParser("Benchmarks for OpenCV Zoo.")
parser.add_argument('--cfg', '-c', type=str,
help='Benchmarking on the given config.')
args = parser.parse_args()
class Timer:
def __init__(self, warmup=0, reduction='median'):
self._warmup = warmup
self._reduction = reduction
self._tm = cv.TickMeter()
self._time_record = []
self._calls = 0
def start(self):
self._tm.start()
def stop(self):
self._tm.stop()
self._calls += 1
self._time_record.append(self._tm.getTimeMilli())
self._tm.reset()
def reset(self):
self._time_record = []
self._calls = 0
def getResult(self):
if self._reduction == 'median':
return self._getMedian(self._time_record[self._warmup:])
elif self._reduction == 'gmean':
return self._getGMean(self._time_record[self._warmup:])
else:
raise NotImplementedError()
def _getMedian(self, records):
''' Return median time
'''
l = len(records)
mid = int(l / 2)
if l % 2 == 0:
return (records[mid] + records[mid - 1]) / 2
else:
return records[mid]
def _getGMean(self, records, drop_largest=3):
''' Return geometric mean of time
'''
time_record_sorted = sorted(records, reverse=True)
return sum(records[drop_largest:]) / (self._calls - drop_largest)
class Data:
def __init__(self, **kwargs):
self._path = kwargs.pop('path', None)
assert self._path, 'Benchmark[\'data\'][\'path\'] cannot be empty.'
self._files = kwargs.pop('files', None)
if not self._files:
print('Benchmark[\'data\'][\'files\'] is empty, loading all images by default.')
self._files = list()
for filename in os.listdir(self._path):
if filename.endswith('jpg') or filename.endswith('png'):
self._files.append(filename)
self._use_label = kwargs.pop('useLabel', False)
if self._use_label:
self._labels = self._load_label()
def _load_label(self):
labels = dict.fromkeys(self._files, None)
for filename in self._files:
labels[filename] = np.loadtxt(os.path.join(self._path, '{}.txt'.format(filename[:-4])), ndmin=2)
return labels
def __getitem__(self, idx):
image = cv.imread(os.path.join(self._path, self._files[idx]))
if self._use_label:
return self._files[idx], image, self._labels[self._files[idx]]
else:
return self._files[idx], image
class Metric:
def __init__(self, **kwargs):
self._sizes = kwargs.pop('sizes', None)
self._warmup = kwargs.pop('warmup', 3)
self._repeat = kwargs.pop('repeat', 10)
assert self._warmup < self._repeat, 'The value of warmup must be smaller than the value of repeat.'
self._batch_size = kwargs.pop('batchSize', 1)
self._reduction = kwargs.pop('reduction', 'median')
self._timer = Timer(self._warmup, self._reduction)
def getReduction(self):
return self._reduction
def forward(self, model, *args, **kwargs):
img = args[0]
h, w, _ = img.shape
if not self._sizes:
self._sizes = [[w, h]]
results = dict()
self._timer.reset()
if len(args) == 1:
for size in self._sizes:
img_r = cv.resize(img, size)
model.setInputSize(size)
# TODO: batched inference
# input_data = [img] * self._batch_size
input_data = img_r
for _ in range(self._repeat+self._warmup):
self._timer.start()
model.infer(input_data)
self._timer.stop()
results[str(size)] = self._timer.getResult()
else:
# TODO: batched inference
# input_data = [args] * self._batch_size
bboxes = args[1]
for idx, bbox in enumerate(bboxes):
for _ in range(self._repeat+self._warmup):
self._timer.start()
model.infer(img, bbox)
self._timer.stop()
results['bbox{}'.format(idx)] = self._timer.getResult()
return results
class Benchmark:
def __init__(self, **kwargs):
self._data_dict = kwargs.pop('data', None)
assert self._data_dict, 'Benchmark[\'data\'] cannot be empty and must have path and files.'
self._data = Data(**self._data_dict)
self._metric_dict = kwargs.pop('metric', None)
self._metric = Metric(**self._metric_dict)
backend_id = kwargs.pop('backend', 'default')
available_backends = dict(
default=cv.dnn.DNN_BACKEND_DEFAULT,
# halide=cv.dnn.DNN_BACKEND_HALIDE,
# inference_engine=cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
opencv=cv.dnn.DNN_BACKEND_OPENCV,
# vkcom=cv.dnn.DNN_BACKEND_VKCOM,
cuda=cv.dnn.DNN_BACKEND_CUDA
)
self._backend = available_backends[backend_id]
target_id = kwargs.pop('target', 'cpu')
available_targets = dict(
cpu=cv.dnn.DNN_TARGET_CPU,
# opencl=cv.dnn.DNN_TARGET_OPENCL,
# opencl_fp16=cv.dnn.DNN_TARGET_OPENCL_FP16,
# myriad=cv.dnn.DNN_TARGET_MYRIAD,
# vulkan=cv.dnn.DNN_TARGET_VULKAN,
# fpga=cv.dnn.DNN_TARGET_FPGA,
cuda=cv.dnn.DNN_TARGET_CUDA,
cuda_fp16=cv.dnn.DNN_TARGET_CUDA_FP16,
# hddl=cv.dnn.DNN_TARGET_HDDL
)
self._target = available_targets[target_id]
self._benchmark_results = dict()
def run(self, model):
model.setBackend(self._backend)
model.setTarget(self._target)
for data in self._data:
self._benchmark_results[data[0]] = self._metric.forward(model, *data[1:])
def printResults(self):
for imgName, results in self._benchmark_results.items():
print(' image: {}'.format(imgName))
total_latency = 0
for key, latency in results.items():
total_latency += latency
print(' {}, latency ({}): {:.4f} ms'.format(key, self._metric.getReduction(), latency))
def build_from_cfg(cfg, registery):
obj_name = cfg.pop('name')
obj = registery.get(obj_name)
return obj(**cfg)
def prepend_pythonpath(cfg, key1, key2):
pythonpath = os.environ['PYTHONPATH']
if cfg[key1][key2].startswith('/'):
return
cfg[key1][key2] = os.path.join(pythonpath, cfg[key1][key2])
if __name__ == '__main__':
assert args.cfg.endswith('yaml'), 'Currently support configs of yaml format only.'
with open(args.cfg, 'r') as f:
cfg = yaml.safe_load(f)
# prepend PYTHONPATH to each path
prepend_pythonpath(cfg['Benchmark'], key1='data', key2='path')
prepend_pythonpath(cfg, key1='Model', key2='modelPath')
# Instantiate benchmarking
benchmark = Benchmark(**cfg['Benchmark'])
# Instantiate model
model = build_from_cfg(cfg=cfg['Model'], registery=MODELS)
# Run benchmarking
print('Benchmarking {}:'.format(model.name))
benchmark.run(model)
benchmark.printResults() |