File size: 5,461 Bytes
6eef315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7d94f5
6eef315
 
e7d94f5
 
6eef315
 
e7d94f5
 
 
 
 
 
6eef315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse

import numpy as np
import cv2 as cv

from lpd_yunet import LPD_YuNet

def str2bool(v):
    if v.lower() in ['on', 'yes', 'true', 'y', 't']:
        return True
    elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
        return False
    else:
        raise NotImplementedError

backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
try:
    backends += [cv.dnn.DNN_BACKEND_TIMVX]
    targets += [cv.dnn.DNN_TARGET_NPU]
    help_msg_backends += "; {:d}: TIMVX"
    help_msg_targets += "; {:d}: NPU"
except:
    print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')

parser = argparse.ArgumentParser(description='LPD-YuNet for License Plate Detection')
parser.add_argument('--input', '-i', type=str, help='Usage: Set path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='license_plate_detection_lpd_yunet_2022may.onnx', help='Usage: Set model path, defaults to license_plate_detection_lpd_yunet_2022may.onnx.')
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
parser.add_argument('--conf_threshold', type=float, default=0.9, help='Usage: Set the minimum needed confidence for the model to identify a license plate, defaults to 0.9. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold.')
parser.add_argument('--nms_threshold', type=float, default=0.3, help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3. Suppress bounding boxes of iou >= nms_threshold.')
parser.add_argument('--top_k', type=int, default=5000, help='Usage: Keep top_k bounding boxes before NMS.')
parser.add_argument('--keep_top_k', type=int, default=750, help='Usage: Keep keep_top_k bounding boxes after NMS.')
parser.add_argument('--save', '-s', type=str2bool, default=False, help='Usage: Set “True” to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input. Default will be set to “False”.')
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Usage: Default will be set to “True” and will open a new window to show results. Set to “False” to stop visualizations from being shown. Invalid in case of camera input.')
args = parser.parse_args()

def visualize(image, dets, line_color=(0, 255, 0), text_color=(0, 0, 255), fps=None):
    output = image.copy()

    if fps is not None:
        cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)

    for det in dets:
        bbox = det[:-1].astype(np.int32)
        x1, y1, x2, y2, x3, y3, x4, y4 = bbox

        # Draw the border of license plate
        cv.line(output, (x1, y1), (x2, y2), line_color, 2)
        cv.line(output, (x2, y2), (x3, y3), line_color, 2)
        cv.line(output, (x3, y3), (x4, y4), line_color, 2)
        cv.line(output, (x4, y4), (x1, y1), line_color, 2)

    return output

if __name__ == '__main__':
    # Instantiate LPD-YuNet
    model = LPD_YuNet(modelPath=args.model,
                      confThreshold=args.conf_threshold,
                      nmsThreshold=args.nms_threshold,
                      topK=args.top_k,
                      keepTopK=args.keep_top_k,
                      backendId=args.backend,
                      targetId=args.target)

    # If input is an image
    if args.input is not None:
        image = cv.imread(args.input)
        h, w, _ = image.shape

        # Inference
        model.setInputSize([w, h])
        results = model.infer(image)

        # Print results
        print('{} license plates detected.'.format(results.shape[0]))

        # Draw results on the input image
        image = visualize(image, results)

        # Save results if save is true
        if args.save:
            print('Resutls saved to result.jpg')
            cv.imwrite('result.jpg', image)

        # Visualize results in a new window
        if args.vis:
            cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
            cv.imshow(args.input, image)
            cv.waitKey(0)
    else: # Omit input to call default camera
        deviceId = 0
        cap = cv.VideoCapture(deviceId)
        w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
        h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
        model.setInputSize([w, h])

        tm = cv.TickMeter()
        while cv.waitKey(1) < 0:
            hasFrame, frame = cap.read()
            if not hasFrame:
                print('No frames grabbed!')
                break

            # Inference
            tm.start()
            results = model.infer(frame) # results is a tuple
            tm.stop()

            # Draw results on the input image
            frame = visualize(frame, results, fps=tm.getFPS())

            # Visualize results in a new Window
            cv.imshow('LPD-YuNet Demo', frame)

            tm.reset()