File size: 6,931 Bytes
42310ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec17a5b
 
 
 
 
 
 
 
 
 
e7d94f5
ec17a5b
42310ef
e7d94f5
 
ec17a5b
 
42310ef
e7d94f5
42310ef
e7d94f5
 
 
 
 
 
 
42310ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1793e8
ec17a5b
 
42310ef
 
 
 
b81d9fd
 
 
 
 
 
42310ef
 
 
 
b81d9fd
 
 
 
 
 
 
42310ef
 
 
c1793e8
42310ef
 
b81d9fd
42310ef
 
 
 
b81d9fd
42310ef
 
 
 
b81d9fd
42310ef
 
 
 
 
 
 
b81d9fd
42310ef
 
 
 
b81d9fd
 
 
 
 
42310ef
 
 
 
 
b81d9fd
 
 
 
 
 
 
42310ef
b81d9fd
42310ef
 
b81d9fd
42310ef
ec17a5b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.

import argparse

import numpy as np
import cv2 as cv

from db import DB

def str2bool(v):
    if v.lower() in ['on', 'yes', 'true', 'y', 't']:
        return True
    elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
        return False
    else:
        raise NotImplementedError

backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
try:
    backends += [cv.dnn.DNN_BACKEND_TIMVX]
    targets += [cv.dnn.DNN_TARGET_NPU]
    help_msg_backends += "; {:d}: TIMVX"
    help_msg_targets += "; {:d}: NPU"
except:
    print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')

parser = argparse.ArgumentParser(description='Real-time Scene Text Detection with Differentiable Binarization (https://arxiv.org/abs/1911.08947).')
parser.add_argument('--input', '-i', type=str, help='Usage: Set path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='text_detection_DB_TD500_resnet18_2021sep.onnx', help='Usage: Set model path, defaults to text_detection_DB_TD500_resnet18_2021sep.onnx.')
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
parser.add_argument('--width', type=int, default=736,
                    help='Usage: Resize input image to certain width, default = 736. It should be multiple by 32.')
parser.add_argument('--height', type=int, default=736,
                    help='Usage: Resize input image to certain height, default = 736. It should be multiple by 32.')
parser.add_argument('--binary_threshold', type=float, default=0.3, help='Usage: Threshold of the binary map, default = 0.3.')
parser.add_argument('--polygon_threshold', type=float, default=0.5, help='Usage: Threshold of polygons, default = 0.5.')
parser.add_argument('--max_candidates', type=int, default=200, help='Usage: Set maximum number of polygon candidates, default = 200.')
parser.add_argument('--unclip_ratio', type=np.float64, default=2.0, help=' Usage: The unclip ratio of the detected text region, which determines the output size, default = 2.0.')
parser.add_argument('--save', '-s', type=str, default=False, help='Usage: Set “True” to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input. Default will be set to “False”.')
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Usage: Default will be set to “True” and will open a new window to show results. Set to “False” to stop visualizations from being shown. Invalid in case of camera input.')
args = parser.parse_args()

def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), isClosed=True, thickness=2, fps=None):
    output = image.copy()

    if fps is not None:
        cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)

    pts = np.array(results[0])
    output = cv.polylines(output, pts, isClosed, box_color, thickness)

    return output

if __name__ == '__main__':
    # Instantiate DB
    model = DB(modelPath=args.model,
               inputSize=[args.width, args.height],
               binaryThreshold=args.binary_threshold,
               polygonThreshold=args.polygon_threshold,
               maxCandidates=args.max_candidates,
               unclipRatio=args.unclip_ratio,
               backendId=args.backend,
               targetId=args.target
    )

    # If input is an image
    if args.input is not None:
        original_image = cv.imread(args.input)
        original_w = original_image.shape[1]
        original_h = original_image.shape[0]
        scaleHeight = original_h / args.height
        scaleWidth = original_w / args.width
        image = cv.resize(original_image, [args.width, args.height])

        # Inference
        results = model.infer(image)

        # Scale the results bounding box
        for i in range(len(results[0])):
            for j in range(4):
                box = results[0][i][j]
                results[0][i][j][0] = box[0] * scaleWidth
                results[0][i][j][1] = box[1] * scaleHeight

        # Print results
        print('{} texts detected.'.format(len(results[0])))
        for idx, (bbox, score) in enumerate(zip(results[0], results[1])):
            print('{}: {} {} {} {}, {:.2f}'.format(idx, bbox[0], bbox[1], bbox[2], bbox[3], score))

        # Draw results on the input image
        original_image = visualize(original_image, results)

        # Save results if save is true
        if args.save:
            print('Resutls saved to result.jpg\n')
            cv.imwrite('result.jpg', original_image)

        # Visualize results in a new window
        if args.vis:
            cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
            cv.imshow(args.input, original_image)
            cv.waitKey(0)
    else: # Omit input to call default camera
        deviceId = 0
        cap = cv.VideoCapture(deviceId)

        tm = cv.TickMeter()
        while cv.waitKey(1) < 0:
            hasFrame, original_image = cap.read()
            if not hasFrame:
                print('No frames grabbed!')
                break

            original_w = original_image.shape[1]
            original_h = original_image.shape[0]
            scaleHeight = original_h / args.height
            scaleWidth = original_w / args.width
            frame = cv.resize(original_image, [args.width, args.height])
            # Inference
            tm.start()
            results = model.infer(frame) # results is a tuple
            tm.stop()

            # Scale the results bounding box
            for i in range(len(results[0])):
                for j in range(4):
                    box = results[0][i][j]
                    results[0][i][j][0] = box[0] * scaleWidth
                    results[0][i][j][1] = box[1] * scaleHeight

            # Draw results on the input image
            original_image = visualize(original_image, results, fps=tm.getFPS())

            # Visualize results in a new Window
            cv.imshow('{} Demo'.format(model.name), original_image)

            tm.reset()