Yuantao Feng
Update to OpenCV APIs (YuNet -> FaceDetectorYN, SFace -> FaceRecognizerSF) (#6)
3af1dea
# This file is part of OpenCV Zoo project. | |
# It is subject to the license terms in the LICENSE file found in the same directory. | |
# | |
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. | |
# Third party copyrights are property of their respective owners. | |
import argparse | |
import numpy as np | |
import cv2 as cv | |
from yunet import YuNet | |
def str2bool(v): | |
if v.lower() in ['on', 'yes', 'true', 'y', 't']: | |
return True | |
elif v.lower() in ['off', 'no', 'false', 'n', 'f']: | |
return False | |
else: | |
raise NotImplementedError | |
parser = argparse.ArgumentParser(description='YuNet: A Fast and Accurate CNN-based Face Detector (https://github.com/ShiqiYu/libfacedetection).') | |
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.') | |
parser.add_argument('--model', '-m', type=str, default='face_detection_yunet.onnx', help='Path to the model.') | |
parser.add_argument('--conf_threshold', type=float, default=0.9, help='Filter out faces of confidence < conf_threshold.') | |
parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.') | |
parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.') | |
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.') | |
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.') | |
args = parser.parse_args() | |
def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), fps=None): | |
output = image.copy() | |
landmark_color = [ | |
(255, 0, 0), # right eye | |
( 0, 0, 255), # left eye | |
( 0, 255, 0), # nose tip | |
(255, 0, 255), # right mouth corner | |
( 0, 255, 255) # left mouth corner | |
] | |
if fps is not None: | |
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color) | |
for det in results: | |
bbox = det[0:4].astype(np.int32) | |
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), box_color, 2) | |
conf = det[-1] | |
cv.putText(output, '{:.4f}'.format(conf), (bbox[0], bbox[1]+12), cv.FONT_HERSHEY_DUPLEX, 0.5, text_color) | |
landmarks = det[4:14].astype(np.int32).reshape((5,2)) | |
for idx, landmark in enumerate(landmarks): | |
cv.circle(output, landmark, 2, landmark_color[idx], 2) | |
return output | |
if __name__ == '__main__': | |
# Instantiate YuNet | |
model = YuNet(modelPath=args.model, | |
inputSize=[320, 320], | |
confThreshold=args.conf_threshold, | |
nmsThreshold=args.nms_threshold, | |
topK=args.top_k) | |
# If input is an image | |
if args.input is not None: | |
image = cv.imread(args.input) | |
h, w, _ = image.shape | |
# Inference | |
model.setInputSize([w, h]) | |
results = model.infer(image) | |
# Print results | |
print('{} faces detected.'.format(results.shape[0])) | |
for idx, det in enumerate(results): | |
print('{}: {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f}'.format( | |
idx, *det[:-1]) | |
) | |
# Draw results on the input image | |
image = visualize(image, results) | |
# Save results if save is true | |
if args.save: | |
print('Resutls saved to result.jpg\n') | |
cv.imwrite('result.jpg', image) | |
# Visualize results in a new window | |
if args.vis: | |
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) | |
cv.imshow(args.input, image) | |
cv.waitKey(0) | |
else: # Omit input to call default camera | |
deviceId = 0 | |
cap = cv.VideoCapture(deviceId) | |
w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) | |
h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) | |
model.setInputSize([w, h]) | |
tm = cv.TickMeter() | |
while cv.waitKey(1) < 0: | |
hasFrame, frame = cap.read() | |
if not hasFrame: | |
print('No frames grabbed!') | |
break | |
# Inference | |
tm.start() | |
results = model.infer(frame) # results is a tuple | |
tm.stop() | |
# Draw results on the input image | |
frame = visualize(frame, results, fps=tm.getFPS()) | |
# Visualize results in a new Window | |
cv.imshow('YuNet Demo', frame) | |
tm.reset() |