Yuantao Feng commited on
Commit
3af1dea
·
1 Parent(s): 9e6c549

Update to OpenCV APIs (YuNet -> FaceDetectorYN, SFace -> FaceRecognizerSF) (#6)

Browse files
README.md CHANGED
@@ -29,10 +29,10 @@ Hardware Setup:
29
  -->
30
  | Model | Input Size | CPU x86_64 (ms) | CPU ARM (ms) |
31
  |-------|------------|-----------------|--------------|
32
- | [YuNet](./models/face_detection_yunet) | 160x120 | 2.35 | 8.72 |
33
  | [DB](./models/text_detection_db) | 640x480 | 137.38 | 2780.78 |
34
  | [CRNN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 |
35
- | [SFace](./models/face_recognition_sface) | 112x112 | 8.69 | 96.79 |
36
  | [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58
37
  | [PP-HumanSeg](./models/human_segmentation_pphumanseg) | 192x192 | 19.92 | 105.32 |
38
 
 
29
  -->
30
  | Model | Input Size | CPU x86_64 (ms) | CPU ARM (ms) |
31
  |-------|------------|-----------------|--------------|
32
+ | [YuNet](./models/face_detection_yunet) | 160x120 | 1.45 | 6.22 |
33
  | [DB](./models/text_detection_db) | 640x480 | 137.38 | 2780.78 |
34
  | [CRNN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 |
35
+ | [SFace](./models/face_recognition_sface) | 112x112 | 8.65 | 99.20 |
36
  | [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58
37
  | [PP-HumanSeg](./models/human_segmentation_pphumanseg) | 192x192 | 19.92 | 105.32 |
38
 
benchmark/config/face_detection_yunet.yaml CHANGED
@@ -19,5 +19,4 @@ Model:
19
  modelPath: "models/face_detection_yunet/face_detection_yunet.onnx"
20
  confThreshold: 0.6
21
  nmsThreshold: 0.3
22
- topK: 5000
23
- keepTopK: 750
 
19
  modelPath: "models/face_detection_yunet/face_detection_yunet.onnx"
20
  confThreshold: 0.6
21
  nmsThreshold: 0.3
22
+ topK: 5000
 
benchmark/requirements.txt CHANGED
@@ -1,5 +1,5 @@
1
  numpy==1.21.2
2
- opencv-python==4.5.3.56
3
  tqdm
4
  pyyaml
5
  requests
 
1
  numpy==1.21.2
2
+ opencv-python==4.5.4.58
3
  tqdm
4
  pyyaml
5
  requests
models/face_detection_yunet/demo.py CHANGED
@@ -25,7 +25,6 @@ parser.add_argument('--model', '-m', type=str, default='face_detection_yunet.onn
25
  parser.add_argument('--conf_threshold', type=float, default=0.9, help='Filter out faces of confidence < conf_threshold.')
26
  parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.')
27
  parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.')
28
- parser.add_argument('--keep_top_k', type=int, default=750, help='Keep keep_top_k bounding boxes after NMS.')
29
  parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
30
  parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
31
  args = parser.parse_args()
@@ -62,8 +61,7 @@ if __name__ == '__main__':
62
  inputSize=[320, 320],
63
  confThreshold=args.conf_threshold,
64
  nmsThreshold=args.nms_threshold,
65
- topK=args.top_k,
66
- keepTopK=args.keep_top_k)
67
 
68
  # If input is an image
69
  if args.input is not None:
 
25
  parser.add_argument('--conf_threshold', type=float, default=0.9, help='Filter out faces of confidence < conf_threshold.')
26
  parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.')
27
  parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.')
 
28
  parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
29
  parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
30
  args = parser.parse_args()
 
61
  inputSize=[320, 320],
62
  confThreshold=args.conf_threshold,
63
  nmsThreshold=args.nms_threshold,
64
+ topK=args.top_k)
 
65
 
66
  # If input is an image
67
  if args.input is not None:
models/face_detection_yunet/yunet.py CHANGED
@@ -10,140 +10,57 @@ import numpy as np
10
  import cv2 as cv
11
 
12
  class YuNet:
13
- def __init__(self, modelPath, inputSize=[320, 320], confThreshold=0.6, nmsThreshold=0.3, topK=5000, keepTopK=750):
14
  self._modelPath = modelPath
15
- self._model = cv.dnn.readNet(self._modelPath)
16
-
17
- self._inputNames = ''
18
- self._outputNames = ['loc', 'conf', 'iou']
19
- self._inputSize = inputSize # [w, h]
20
  self._confThreshold = confThreshold
21
  self._nmsThreshold = nmsThreshold
22
  self._topK = topK
23
- self._keepTopK = keepTopK
24
-
25
- self._min_sizes = [[10, 16, 24], [32, 48], [64, 96], [128, 192, 256]]
26
- self._steps = [8, 16, 32, 64]
27
- self._variance = [0.1, 0.2]
28
 
29
- # Generate priors
30
- self._priorGen()
 
 
 
 
 
 
 
31
 
32
  @property
33
  def name(self):
34
  return self.__class__.__name__
35
 
36
- def setBackend(self, backend):
37
- self._model.setPreferableBackend(backend)
38
-
39
- def setTarget(self, target):
40
- self._model.setPreferableTarget(target)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  def setInputSize(self, input_size):
43
- self._inputSize = input_size # [w, h]
44
-
45
- # Regenerate priors
46
- self._priorGen()
47
-
48
- def _preprocess(self, image):
49
- return cv.dnn.blobFromImage(image)
50
 
51
  def infer(self, image):
52
- assert image.shape[0] == self._inputSize[1], '{} (height of input image) != {} (preset height)'.format(image.shape[0], self._inputSize[1])
53
- assert image.shape[1] == self._inputSize[0], '{} (width of input image) != {} (preset width)'.format(image.shape[1], self._inputSize[0])
54
-
55
- # Preprocess
56
- inputBlob = self._preprocess(image)
57
-
58
  # Forward
59
- self._model.setInput(inputBlob, self._inputNames)
60
- outputBlob = self._model.forward(self._outputNames)
61
-
62
- # Postprocess
63
- results = self._postprocess(outputBlob)
64
-
65
- return results
66
-
67
- def _postprocess(self, outputBlob):
68
- # Decode
69
- dets = self._decode(outputBlob)
70
-
71
- # NMS
72
- keepIdx = cv.dnn.NMSBoxes(
73
- bboxes=dets[:, 0:4].tolist(),
74
- scores=dets[:, -1].tolist(),
75
- score_threshold=self._confThreshold,
76
- nms_threshold=self._nmsThreshold,
77
- top_k=self._topK
78
- ) # box_num x class_num
79
- if len(keepIdx) > 0:
80
- dets = dets[keepIdx]
81
- dets = np.squeeze(dets, axis=1)
82
- return dets[:self._keepTopK]
83
- else:
84
- return np.empty(shape=(0, 15))
85
-
86
- def _priorGen(self):
87
- w, h = self._inputSize
88
- feature_map_2th = [int(int((h + 1) / 2) / 2),
89
- int(int((w + 1) / 2) / 2)]
90
- feature_map_3th = [int(feature_map_2th[0] / 2),
91
- int(feature_map_2th[1] / 2)]
92
- feature_map_4th = [int(feature_map_3th[0] / 2),
93
- int(feature_map_3th[1] / 2)]
94
- feature_map_5th = [int(feature_map_4th[0] / 2),
95
- int(feature_map_4th[1] / 2)]
96
- feature_map_6th = [int(feature_map_5th[0] / 2),
97
- int(feature_map_5th[1] / 2)]
98
-
99
- feature_maps = [feature_map_3th, feature_map_4th,
100
- feature_map_5th, feature_map_6th]
101
-
102
- priors = []
103
- for k, f in enumerate(feature_maps):
104
- min_sizes = self._min_sizes[k]
105
- for i, j in product(range(f[0]), range(f[1])): # i->h, j->w
106
- for min_size in min_sizes:
107
- s_kx = min_size / w
108
- s_ky = min_size / h
109
-
110
- cx = (j + 0.5) * self._steps[k] / w
111
- cy = (i + 0.5) * self._steps[k] / h
112
-
113
- priors.append([cx, cy, s_kx, s_ky])
114
- self.priors = np.array(priors, dtype=np.float32)
115
-
116
- def _decode(self, outputBlob):
117
- loc, conf, iou = outputBlob
118
- # get score
119
- cls_scores = conf[:, 1]
120
- iou_scores = iou[:, 0]
121
- # clamp
122
- _idx = np.where(iou_scores < 0.)
123
- iou_scores[_idx] = 0.
124
- _idx = np.where(iou_scores > 1.)
125
- iou_scores[_idx] = 1.
126
- scores = np.sqrt(cls_scores * iou_scores)
127
- scores = scores[:, np.newaxis]
128
-
129
- scale = np.array(self._inputSize)
130
-
131
- # get bboxes
132
- bboxes = np.hstack((
133
- (self.priors[:, 0:2] + loc[:, 0:2] * self._variance[0] * self.priors[:, 2:4]) * scale,
134
- (self.priors[:, 2:4] * np.exp(loc[:, 2:4] * self._variance)) * scale
135
- ))
136
- # (x_c, y_c, w, h) -> (x1, y1, w, h)
137
- bboxes[:, 0:2] -= bboxes[:, 2:4] / 2
138
-
139
- # get landmarks
140
- landmarks = np.hstack((
141
- (self.priors[:, 0:2] + loc[:, 4: 6] * self._variance[0] * self.priors[:, 2:4]) * scale,
142
- (self.priors[:, 0:2] + loc[:, 6: 8] * self._variance[0] * self.priors[:, 2:4]) * scale,
143
- (self.priors[:, 0:2] + loc[:, 8:10] * self._variance[0] * self.priors[:, 2:4]) * scale,
144
- (self.priors[:, 0:2] + loc[:, 10:12] * self._variance[0] * self.priors[:, 2:4]) * scale,
145
- (self.priors[:, 0:2] + loc[:, 12:14] * self._variance[0] * self.priors[:, 2:4]) * scale
146
- ))
147
-
148
- dets = np.hstack((bboxes, landmarks, scores))
149
- return dets
 
10
  import cv2 as cv
11
 
12
  class YuNet:
13
+ def __init__(self, modelPath, inputSize=[320, 320], confThreshold=0.6, nmsThreshold=0.3, topK=5000, backendId=0, targetId=0):
14
  self._modelPath = modelPath
15
+ self._inputSize = tuple(inputSize) # [w, h]
 
 
 
 
16
  self._confThreshold = confThreshold
17
  self._nmsThreshold = nmsThreshold
18
  self._topK = topK
19
+ self._backendId = backendId
20
+ self._targetId = targetId
 
 
 
21
 
22
+ self._model = cv.FaceDetectorYN.create(
23
+ model=self._modelPath,
24
+ config="",
25
+ input_size=self._inputSize,
26
+ score_threshold=self._confThreshold,
27
+ nms_threshold=self._nmsThreshold,
28
+ top_k=self._topK,
29
+ backend_id=self._backendId,
30
+ target_id=self._targetId)
31
 
32
  @property
33
  def name(self):
34
  return self.__class__.__name__
35
 
36
+ def setBackend(self, backendId):
37
+ self._backendId = backendId
38
+ self._model = cv.FaceDetectorYN.create(
39
+ model=self._modelPath,
40
+ config="",
41
+ input_size=self._inputSize,
42
+ score_threshold=self._confThreshold,
43
+ nms_threshold=self._nmsThreshold,
44
+ top_k=self._topK,
45
+ backend_id=self._backendId,
46
+ target_id=self._targetId)
47
+
48
+ def setTarget(self, targetId):
49
+ self._targetId = targetId
50
+ self._model = cv.FaceDetectorYN.create(
51
+ model=self._modelPath,
52
+ config="",
53
+ input_size=self._inputSize,
54
+ score_threshold=self._confThreshold,
55
+ nms_threshold=self._nmsThreshold,
56
+ top_k=self._topK,
57
+ backend_id=self._backendId,
58
+ target_id=self._targetId)
59
 
60
  def setInputSize(self, input_size):
61
+ self._model.setInputSize(tuple(input_size))
 
 
 
 
 
 
62
 
63
  def infer(self, image):
 
 
 
 
 
 
64
  # Forward
65
+ faces = self._model.detect(image)
66
+ return faces[1]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/face_recognition_sface/demo.py CHANGED
@@ -35,14 +35,13 @@ args = parser.parse_args()
35
 
36
  if __name__ == '__main__':
37
  # Instantiate SFace for face recognition
38
- recognizer = SFace(modelPath=args.model)
39
  # Instantiate YuNet for face detection
40
  detector = YuNet(modelPath='../face_detection_yunet/face_detection_yunet.onnx',
41
  inputSize=[320, 320],
42
  confThreshold=0.9,
43
  nmsThreshold=0.3,
44
- topK=5000,
45
- keepTopK=750)
46
 
47
  img1 = cv.imread(args.input1)
48
  img2 = cv.imread(args.input2)
@@ -56,16 +55,5 @@ if __name__ == '__main__':
56
  assert face2.shape[0] > 0, 'Cannot find a face in {}'.format(args.input2)
57
 
58
  # Match
59
- distance = recognizer.match(img1, face1[0][:-1], img2, face2[0][:-1], args.dis_type)
60
- print(distance)
61
- if args.dis_type == 0:
62
- dis_type = 'Cosine'
63
- threshold = 0.363
64
- result = 'same identity' if distance >= threshold else 'different identity'
65
- elif args.dis_type == 1:
66
- dis_type = 'Norm-L2'
67
- threshold = 1.128
68
- result = 'same identity' if distance <= threshold else 'different identity'
69
- else:
70
- raise NotImplementedError()
71
- print('Using {} distance, threshold {}: {}.'.format(dis_type, threshold, result))
 
35
 
36
  if __name__ == '__main__':
37
  # Instantiate SFace for face recognition
38
+ recognizer = SFace(modelPath=args.model, disType=args.dis_type)
39
  # Instantiate YuNet for face detection
40
  detector = YuNet(modelPath='../face_detection_yunet/face_detection_yunet.onnx',
41
  inputSize=[320, 320],
42
  confThreshold=0.9,
43
  nmsThreshold=0.3,
44
+ topK=5000)
 
45
 
46
  img1 = cv.imread(args.input1)
47
  img2 = cv.imread(args.input2)
 
55
  assert face2.shape[0] > 0, 'Cannot find a face in {}'.format(args.input2)
56
 
57
  # Match
58
+ result = recognizer.match(img1, face1[0][:-1], img2, face2[0][:-1])
59
+ print('Result: {}.'.format('same identity' if result else 'different identities'))
 
 
 
 
 
 
 
 
 
 
 
models/face_recognition_sface/sface.py CHANGED
@@ -10,156 +10,60 @@ import cv2 as cv
10
  from _testcapi import FLT_MIN
11
 
12
  class SFace:
13
- def __init__(self, modelPath):
14
- self._model = cv.dnn.readNet(modelPath)
15
- self._input_size = [112, 112]
16
- self._dst = np.array([
17
- [38.2946, 51.6963],
18
- [73.5318, 51.5014],
19
- [56.0252, 71.7366],
20
- [41.5493, 92.3655],
21
- [70.7299, 92.2041]
22
- ], dtype=np.float32)
23
- self._dst_mean = np.array([56.0262, 71.9008], dtype=np.float32)
 
 
 
 
24
 
25
  @property
26
  def name(self):
27
  return self.__class__.__name__
28
 
29
- def setBackend(self, backend_id):
30
- self._model.setPreferableBackend(backend_id)
31
-
32
- def setTarget(self, target_id):
33
- self._model.setPreferableTarget(target_id)
 
 
 
 
 
 
 
 
 
 
34
 
35
  def _preprocess(self, image, bbox):
36
- aligned_image = self._alignCrop(image, bbox)
37
- return cv.dnn.blobFromImage(aligned_image)
38
 
39
  def infer(self, image, bbox):
40
  # Preprocess
41
  inputBlob = self._preprocess(image, bbox)
42
 
43
  # Forward
44
- self._model.setInput(inputBlob)
45
- outputBlob = self._model.forward()
46
-
47
- # Postprocess
48
- results = self._postprocess(outputBlob)
49
-
50
- return results
51
 
52
- def _postprocess(self, outputBlob):
53
- return outputBlob / cv.norm(outputBlob)
54
-
55
- def match(self, image1, face1, image2, face2, dis_type=0):
56
  feature1 = self.infer(image1, face1)
57
  feature2 = self.infer(image2, face2)
58
 
59
- if dis_type == 0: # COSINE
60
- return np.sum(feature1 * feature2)
61
- elif dis_type == 1: # NORM_L2
62
- return cv.norm(feature1, feature2)
63
- else:
64
- raise NotImplementedError()
65
-
66
- def _alignCrop(self, image, face):
67
- # Retrieve landmarks
68
- if face.shape[-1] == (4 + 5 * 2):
69
- landmarks = face[4:].reshape(5, 2)
70
- else:
71
- raise NotImplementedError()
72
- warp_mat = self._getSimilarityTransformMatrix(landmarks)
73
- aligned_image = cv.warpAffine(image, warp_mat, self._input_size, flags=cv.INTER_LINEAR)
74
- return aligned_image
75
-
76
- def _getSimilarityTransformMatrix(self, src):
77
- # compute the mean of src and dst
78
- src_mean = np.array([np.mean(src[:, 0]), np.mean(src[:, 1])], dtype=np.float32)
79
- dst_mean = np.array([56.0262, 71.9008], dtype=np.float32)
80
- # subtract the means from src and dst
81
- src_demean = src.copy()
82
- src_demean[:, 0] = src_demean[:, 0] - src_mean[0]
83
- src_demean[:, 1] = src_demean[:, 1] - src_mean[1]
84
- dst_demean = self._dst.copy()
85
- dst_demean[:, 0] = dst_demean[:, 0] - dst_mean[0]
86
- dst_demean[:, 1] = dst_demean[:, 1] - dst_mean[1]
87
-
88
- A = np.array([[0., 0.], [0., 0.]], dtype=np.float64)
89
- for i in range(5):
90
- A[0][0] += dst_demean[i][0] * src_demean[i][0]
91
- A[0][1] += dst_demean[i][0] * src_demean[i][1]
92
- A[1][0] += dst_demean[i][1] * src_demean[i][0]
93
- A[1][1] += dst_demean[i][1] * src_demean[i][1]
94
- A = A / 5
95
-
96
- d = np.array([1.0, 1.0], dtype=np.float64)
97
- if A[0][0] * A[1][1] - A[0][1] * A[1][0] < 0:
98
- d[1] = -1
99
-
100
- T = np.array([
101
- [1.0, 0.0, 0.0],
102
- [0.0, 1.0, 0.0],
103
- [0.0, 0.0, 1.0]
104
- ], dtype=np.float64)
105
-
106
- s, u, vt = cv.SVDecomp(A)
107
- smax = s[0][0] if s[0][0] > s[1][0] else s[1][0]
108
- tol = smax * 2 * FLT_MIN
109
- rank = int(0)
110
- if s[0][0] > tol:
111
- rank += 1
112
- if s[1][0] > tol:
113
- rank += 1
114
- det_u = u[0][0] * u[1][1] - u[0][1] * u[1][0]
115
- det_vt = vt[0][0] * vt[1][1] - vt[0][1] * vt[1][0]
116
- if rank == 1:
117
- if det_u * det_vt > 0:
118
- uvt = np.matmul(u, vt)
119
- T[0][0] = uvt[0][0]
120
- T[0][1] = uvt[0][1]
121
- T[1][0] = uvt[1][0]
122
- T[1][1] = uvt[1][1]
123
- else:
124
- temp = d[1]
125
- d[1] = -1
126
- D = np.array([[d[0], 0.0], [0.0, d[1]]], dtype=np.float64)
127
- Dvt = np.matmul(D, vt)
128
- uDvt = np.matmul(u, Dvt)
129
- T[0][0] = uDvt[0][0]
130
- T[0][1] = uDvt[0][1]
131
- T[1][0] = uDvt[1][0]
132
- T[1][1] = uDvt[1][1]
133
- d[1] = temp
134
- else:
135
- D = np.array([[d[0], 0.0], [0.0, d[1]]], dtype=np.float64)
136
- Dvt = np.matmul(D, vt)
137
- uDvt = np.matmul(u, Dvt)
138
- T[0][0] = uDvt[0][0]
139
- T[0][1] = uDvt[0][1]
140
- T[1][0] = uDvt[1][0]
141
- T[1][1] = uDvt[1][1]
142
-
143
- var1 = 0.0
144
- var2 = 0.0
145
- for i in range(5):
146
- var1 += src_demean[i][0] * src_demean[i][0]
147
- var2 += src_demean[i][1] * src_demean[i][1]
148
- var1 /= 5
149
- var2 /= 5
150
-
151
- scale = 1.0 / (var1 + var2) * (s[0][0] * d[0] + s[1][0] * d[1])
152
- TS = [
153
- T[0][0] * src_mean[0] + T[0][1] * src_mean[1],
154
- T[1][0] * src_mean[0] + T[1][1] * src_mean[1]
155
- ]
156
- T[0][2] = dst_mean[0] - scale * TS[0]
157
- T[1][2] = dst_mean[1] - scale * TS[1]
158
- T[0][0] *= scale
159
- T[0][1] *= scale
160
- T[1][0] *= scale
161
- T[1][1] *= scale
162
- return np.array([
163
- [T[0][0], T[0][1], T[0][2]],
164
- [T[1][0], T[1][1], T[1][2]]
165
- ], dtype=np.float64)
 
10
  from _testcapi import FLT_MIN
11
 
12
  class SFace:
13
+ def __init__(self, modelPath, disType=0, backendId=0, targetId=0):
14
+ self._modelPath = modelPath
15
+ self._backendId = backendId
16
+ self._targetId = targetId
17
+ self._model = cv.FaceRecognizerSF.create(
18
+ model=self._modelPath,
19
+ config="",
20
+ backend_id=self._backendId,
21
+ target_id=self._targetId)
22
+
23
+ self._disType = disType # 0: cosine similarity, 1: Norm-L2 distance
24
+ assert self._disType in [0, 1], "0: Cosine similarity, 1: norm-L2 distance, others: invalid"
25
+
26
+ self._threshold_cosine = 0.363
27
+ self._threshold_norml2 = 1.128
28
 
29
  @property
30
  def name(self):
31
  return self.__class__.__name__
32
 
33
+ def setBackend(self, backendId):
34
+ self._backendId = backendId
35
+ self._model = cv.FaceRecognizerSF.create(
36
+ model=self._modelPath,
37
+ config="",
38
+ backend_id=self._backendId,
39
+ target_id=self._targetId)
40
+
41
+ def setTarget(self, targetId):
42
+ self._targetId = targetId
43
+ self._model = cv.FaceRecognizerSF.create(
44
+ model=self._modelPath,
45
+ config="",
46
+ backend_id=self._backendId,
47
+ target_id=self._targetId)
48
 
49
  def _preprocess(self, image, bbox):
50
+ return self._model.alignCrop(image, bbox)
 
51
 
52
  def infer(self, image, bbox):
53
  # Preprocess
54
  inputBlob = self._preprocess(image, bbox)
55
 
56
  # Forward
57
+ features = self._model.feature(inputBlob)
58
+ return features
 
 
 
 
 
59
 
60
+ def match(self, image1, face1, image2, face2):
 
 
 
61
  feature1 = self.infer(image1, face1)
62
  feature2 = self.infer(image2, face2)
63
 
64
+ if self._disType == 0: # COSINE
65
+ cosine_score = self._model.match(feature1, feature2, self._disType)
66
+ return 1 if cosine_score >= self._threshold_cosine else 0
67
+ else: # NORM_L2
68
+ norml2_distance = self._model.match(feature1, feature2, self._disType)
69
+ return 1 if norml2_distance <= self._threshold_norml2 else 0