Yuantao Feng commited on
Commit
9e6c549
·
1 Parent(s): e0b3895

add PPHumanSeg from PaddleHub conversion (#5)

Browse files

* add PPHumanSeg impl and demo

* add benchmark impl and results for PPHumanSeg

README.md CHANGED
@@ -34,7 +34,7 @@ Hardware Setup:
34
  | [CRNN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 |
35
  | [SFace](./models/face_recognition_sface) | 112x112 | 8.69 | 96.79 |
36
  | [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58
37
-
38
 
39
  ## License
40
 
 
34
  | [CRNN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 |
35
  | [SFace](./models/face_recognition_sface) | 112x112 | 8.69 | 96.79 |
36
  | [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58
37
+ | [PP-HumanSeg](./models/human_segmentation_pphumanseg) | 192x192 | 19.92 | 105.32 |
38
 
39
  ## License
40
 
benchmark/config/human_segmentation_pphumanseg.yaml ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Benchmark:
2
+ name: "Human Segmentation Benchmark"
3
+ data:
4
+ path: "benchmark/data/human_segmentation"
5
+ files: ["messi5.jpg", "100040721_1.jpg", "detect.jpg"]
6
+ toRGB: True
7
+ resize: [192, 192]
8
+ metric:
9
+ warmup: 3
10
+ repeat: 10
11
+ batchSize: 1
12
+ reduction: 'median'
13
+ backend: "default"
14
+ target: "cpu"
15
+
16
+ Model:
17
+ name: "PPHumanSeg"
18
+ modelPath: "models/human_segmentation_pphumanseg/human_segmentation_pphumanseg.onnx"
benchmark/download_data.py CHANGED
@@ -177,6 +177,10 @@ data_downloaders = dict(
177
  url='https://drive.google.com/u/0/uc?id=1qcsrX3CIAGTooB-9fLKYwcvoCuMgjzGU&export=download',
178
  sha='987546f567f9f11d150eea78951024b55b015401',
179
  filename='image_classification.zip'),
 
 
 
 
180
  )
181
 
182
  if __name__ == '__main__':
 
177
  url='https://drive.google.com/u/0/uc?id=1qcsrX3CIAGTooB-9fLKYwcvoCuMgjzGU&export=download',
178
  sha='987546f567f9f11d150eea78951024b55b015401',
179
  filename='image_classification.zip'),
180
+ human_segmentation=Downloader(name='human_segmentation',
181
+ url='https://drive.google.com/u/0/uc?id=1Kh0qXcAZCEaqwavbUZubhRwrn_8zY7IL&export=download',
182
+ sha='ac0eedfd8568570cad135acccd08a134257314d0',
183
+ filename='human_segmentation.zip')
184
  )
185
 
186
  if __name__ == '__main__':
models/__init__.py CHANGED
@@ -3,6 +3,7 @@ from .text_detection_db.db import DB
3
  from .text_recognition_crnn.crnn import CRNN
4
  from .face_recognition_sface.sface import SFace
5
  from .image_classification_ppresnet.ppresnet import PPResNet
 
6
 
7
  class Registery:
8
  def __init__(self, name):
@@ -21,3 +22,4 @@ MODELS.register(DB)
21
  MODELS.register(CRNN)
22
  MODELS.register(SFace)
23
  MODELS.register(PPResNet)
 
 
3
  from .text_recognition_crnn.crnn import CRNN
4
  from .face_recognition_sface.sface import SFace
5
  from .image_classification_ppresnet.ppresnet import PPResNet
6
+ from .human_segmentation_pphumanseg.pphumanseg import PPHumanSeg
7
 
8
  class Registery:
9
  def __init__(self, name):
 
22
  MODELS.register(CRNN)
23
  MODELS.register(SFace)
24
  MODELS.register(PPResNet)
25
+ MODELS.register(PPHumanSeg)
models/human_segmentation_pphumanseg/LICENSE ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
2
+
3
+ Apache License
4
+ Version 2.0, January 2004
5
+ http://www.apache.org/licenses/
6
+
7
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
8
+
9
+ 1. Definitions.
10
+
11
+ "License" shall mean the terms and conditions for use, reproduction,
12
+ and distribution as defined by Sections 1 through 9 of this document.
13
+
14
+ "Licensor" shall mean the copyright owner or entity authorized by
15
+ the copyright owner that is granting the License.
16
+
17
+ "Legal Entity" shall mean the union of the acting entity and all
18
+ other entities that control, are controlled by, or are under common
19
+ control with that entity. For the purposes of this definition,
20
+ "control" means (i) the power, direct or indirect, to cause the
21
+ direction or management of such entity, whether by contract or
22
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
23
+ outstanding shares, or (iii) beneficial ownership of such entity.
24
+
25
+ "You" (or "Your") shall mean an individual or Legal Entity
26
+ exercising permissions granted by this License.
27
+
28
+ "Source" form shall mean the preferred form for making modifications,
29
+ including but not limited to software source code, documentation
30
+ source, and configuration files.
31
+
32
+ "Object" form shall mean any form resulting from mechanical
33
+ transformation or translation of a Source form, including but
34
+ not limited to compiled object code, generated documentation,
35
+ and conversions to other media types.
36
+
37
+ "Work" shall mean the work of authorship, whether in Source or
38
+ Object form, made available under the License, as indicated by a
39
+ copyright notice that is included in or attached to the work
40
+ (an example is provided in the Appendix below).
41
+
42
+ "Derivative Works" shall mean any work, whether in Source or Object
43
+ form, that is based on (or derived from) the Work and for which the
44
+ editorial revisions, annotations, elaborations, or other modifications
45
+ represent, as a whole, an original work of authorship. For the purposes
46
+ of this License, Derivative Works shall not include works that remain
47
+ separable from, or merely link (or bind by name) to the interfaces of,
48
+ the Work and Derivative Works thereof.
49
+
50
+ "Contribution" shall mean any work of authorship, including
51
+ the original version of the Work and any modifications or additions
52
+ to that Work or Derivative Works thereof, that is intentionally
53
+ submitted to Licensor for inclusion in the Work by the copyright owner
54
+ or by an individual or Legal Entity authorized to submit on behalf of
55
+ the copyright owner. For the purposes of this definition, "submitted"
56
+ means any form of electronic, verbal, or written communication sent
57
+ to the Licensor or its representatives, including but not limited to
58
+ communication on electronic mailing lists, source code control systems,
59
+ and issue tracking systems that are managed by, or on behalf of, the
60
+ Licensor for the purpose of discussing and improving the Work, but
61
+ excluding communication that is conspicuously marked or otherwise
62
+ designated in writing by the copyright owner as "Not a Contribution."
63
+
64
+ "Contributor" shall mean Licensor and any individual or Legal Entity
65
+ on behalf of whom a Contribution has been received by Licensor and
66
+ subsequently incorporated within the Work.
67
+
68
+ 2. Grant of Copyright License. Subject to the terms and conditions of
69
+ this License, each Contributor hereby grants to You a perpetual,
70
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
71
+ copyright license to reproduce, prepare Derivative Works of,
72
+ publicly display, publicly perform, sublicense, and distribute the
73
+ Work and such Derivative Works in Source or Object form.
74
+
75
+ 3. Grant of Patent License. Subject to the terms and conditions of
76
+ this License, each Contributor hereby grants to You a perpetual,
77
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
78
+ (except as stated in this section) patent license to make, have made,
79
+ use, offer to sell, sell, import, and otherwise transfer the Work,
80
+ where such license applies only to those patent claims licensable
81
+ by such Contributor that are necessarily infringed by their
82
+ Contribution(s) alone or by combination of their Contribution(s)
83
+ with the Work to which such Contribution(s) was submitted. If You
84
+ institute patent litigation against any entity (including a
85
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
86
+ or a Contribution incorporated within the Work constitutes direct
87
+ or contributory patent infringement, then any patent licenses
88
+ granted to You under this License for that Work shall terminate
89
+ as of the date such litigation is filed.
90
+
91
+ 4. Redistribution. You may reproduce and distribute copies of the
92
+ Work or Derivative Works thereof in any medium, with or without
93
+ modifications, and in Source or Object form, provided that You
94
+ meet the following conditions:
95
+
96
+ (a) You must give any other recipients of the Work or
97
+ Derivative Works a copy of this License; and
98
+
99
+ (b) You must cause any modified files to carry prominent notices
100
+ stating that You changed the files; and
101
+
102
+ (c) You must retain, in the Source form of any Derivative Works
103
+ that You distribute, all copyright, patent, trademark, and
104
+ attribution notices from the Source form of the Work,
105
+ excluding those notices that do not pertain to any part of
106
+ the Derivative Works; and
107
+
108
+ (d) If the Work includes a "NOTICE" text file as part of its
109
+ distribution, then any Derivative Works that You distribute must
110
+ include a readable copy of the attribution notices contained
111
+ within such NOTICE file, excluding those notices that do not
112
+ pertain to any part of the Derivative Works, in at least one
113
+ of the following places: within a NOTICE text file distributed
114
+ as part of the Derivative Works; within the Source form or
115
+ documentation, if provided along with the Derivative Works; or,
116
+ within a display generated by the Derivative Works, if and
117
+ wherever such third-party notices normally appear. The contents
118
+ of the NOTICE file are for informational purposes only and
119
+ do not modify the License. You may add Your own attribution
120
+ notices within Derivative Works that You distribute, alongside
121
+ or as an addendum to the NOTICE text from the Work, provided
122
+ that such additional attribution notices cannot be construed
123
+ as modifying the License.
124
+
125
+ You may add Your own copyright statement to Your modifications and
126
+ may provide additional or different license terms and conditions
127
+ for use, reproduction, or distribution of Your modifications, or
128
+ for any such Derivative Works as a whole, provided Your use,
129
+ reproduction, and distribution of the Work otherwise complies with
130
+ the conditions stated in this License.
131
+
132
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
133
+ any Contribution intentionally submitted for inclusion in the Work
134
+ by You to the Licensor shall be under the terms and conditions of
135
+ this License, without any additional terms or conditions.
136
+ Notwithstanding the above, nothing herein shall supersede or modify
137
+ the terms of any separate license agreement you may have executed
138
+ with Licensor regarding such Contributions.
139
+
140
+ 6. Trademarks. This License does not grant permission to use the trade
141
+ names, trademarks, service marks, or product names of the Licensor,
142
+ except as required for reasonable and customary use in describing the
143
+ origin of the Work and reproducing the content of the NOTICE file.
144
+
145
+ 7. Disclaimer of Warranty. Unless required by applicable law or
146
+ agreed to in writing, Licensor provides the Work (and each
147
+ Contributor provides its Contributions) on an "AS IS" BASIS,
148
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
149
+ implied, including, without limitation, any warranties or conditions
150
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
151
+ PARTICULAR PURPOSE. You are solely responsible for determining the
152
+ appropriateness of using or redistributing the Work and assume any
153
+ risks associated with Your exercise of permissions under this License.
154
+
155
+ 8. Limitation of Liability. In no event and under no legal theory,
156
+ whether in tort (including negligence), contract, or otherwise,
157
+ unless required by applicable law (such as deliberate and grossly
158
+ negligent acts) or agreed to in writing, shall any Contributor be
159
+ liable to You for damages, including any direct, indirect, special,
160
+ incidental, or consequential damages of any character arising as a
161
+ result of this License or out of the use or inability to use the
162
+ Work (including but not limited to damages for loss of goodwill,
163
+ work stoppage, computer failure or malfunction, or any and all
164
+ other commercial damages or losses), even if such Contributor
165
+ has been advised of the possibility of such damages.
166
+
167
+ 9. Accepting Warranty or Additional Liability. While redistributing
168
+ the Work or Derivative Works thereof, You may choose to offer,
169
+ and charge a fee for, acceptance of support, warranty, indemnity,
170
+ or other liability obligations and/or rights consistent with this
171
+ License. However, in accepting such obligations, You may act only
172
+ on Your own behalf and on Your sole responsibility, not on behalf
173
+ of any other Contributor, and only if You agree to indemnify,
174
+ defend, and hold each Contributor harmless for any liability
175
+ incurred by, or claims asserted against, such Contributor by reason
176
+ of your accepting any such warranty or additional liability.
177
+
178
+ END OF TERMS AND CONDITIONS
179
+
180
+ APPENDIX: How to apply the Apache License to your work.
181
+
182
+ To apply the Apache License to your work, attach the following
183
+ boilerplate notice, with the fields enclosed by brackets "[]"
184
+ replaced with your own identifying information. (Don't include
185
+ the brackets!) The text should be enclosed in the appropriate
186
+ comment syntax for the file format. We also recommend that a
187
+ file or class name and description of purpose be included on the
188
+ same "printed page" as the copyright notice for easier
189
+ identification within third-party archives.
190
+
191
+ Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
192
+
193
+ Licensed under the Apache License, Version 2.0 (the "License");
194
+ you may not use this file except in compliance with the License.
195
+ You may obtain a copy of the License at
196
+
197
+ http://www.apache.org/licenses/LICENSE-2.0
198
+
199
+ Unless required by applicable law or agreed to in writing, software
200
+ distributed under the License is distributed on an "AS IS" BASIS,
201
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
202
+ See the License for the specific language governing permissions and
203
+ limitations under the License.
models/human_segmentation_pphumanseg/README.md ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PPHumanSeg
2
+
3
+ This model is ported from [PaddleHub](https://github.com/PaddlePaddle/PaddleHub) using [this script from OpenCV](https://github.com/opencv/opencv/blob/master/samples/dnn/dnn_model_runner/dnn_conversion/paddlepaddle/paddle_humanseg.py).
4
+
5
+ ## Demo
6
+
7
+ Run the following command to try the demo:
8
+ ```shell
9
+ # detect on camera input
10
+ python demo.py
11
+ # detect on an image
12
+ python demo.py --input /path/to/image
13
+ ```
14
+
15
+ ## License
16
+
17
+ All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
18
+
19
+ ## Reference
20
+
21
+ - https://arxiv.org/abs/1512.03385
22
+ - https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/paddlepaddle
23
+ - https://github.com/PaddlePaddle/PaddleHub
models/human_segmentation_pphumanseg/demo.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is part of OpenCV Zoo project.
2
+ # It is subject to the license terms in the LICENSE file found in the same directory.
3
+ #
4
+ # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
5
+ # Third party copyrights are property of their respective owners.
6
+
7
+ import argparse
8
+
9
+ import numpy as np
10
+ import cv2 as cv
11
+
12
+ from pphumanseg import PPHumanSeg
13
+
14
+ def str2bool(v):
15
+ if v.lower() in ['on', 'yes', 'true', 'y', 't']:
16
+ return True
17
+ elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
18
+ return False
19
+ else:
20
+ raise NotImplementedError
21
+
22
+ parser = argparse.ArgumentParser(description='PPHumanSeg (https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.2/contrib/PP-HumanSeg)')
23
+ parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
24
+ parser.add_argument('--model', '-m', type=str, default='human_segmentation_pphumanseg.onnx', help='Path to the model.')
25
+ parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.')
26
+ parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
27
+ args = parser.parse_args()
28
+
29
+ def get_color_map_list(num_classes):
30
+ """
31
+ Returns the color map for visualizing the segmentation mask,
32
+ which can support arbitrary number of classes.
33
+
34
+ Args:
35
+ num_classes (int): Number of classes.
36
+
37
+ Returns:
38
+ (list). The color map.
39
+ """
40
+
41
+ num_classes += 1
42
+ color_map = num_classes * [0, 0, 0]
43
+ for i in range(0, num_classes):
44
+ j = 0
45
+ lab = i
46
+ while lab:
47
+ color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
48
+ color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
49
+ color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
50
+ j += 1
51
+ lab >>= 3
52
+ color_map = color_map[3:]
53
+ return color_map
54
+
55
+ def visualize(image, result, weight=0.6, fps=None):
56
+ """
57
+ Convert predict result to color image, and save added image.
58
+
59
+ Args:
60
+ image (str): The input image.
61
+ result (np.ndarray): The predict result of image.
62
+ weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6
63
+ fps (str): The FPS to be drawn on the input image.
64
+
65
+ Returns:
66
+ vis_result (np.ndarray): The visualized result.
67
+ """
68
+ color_map = get_color_map_list(256)
69
+ color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
70
+ color_map = np.array(color_map).astype(np.uint8)
71
+ # Use OpenCV LUT for color mapping
72
+ c1 = cv.LUT(result, color_map[:, 0])
73
+ c2 = cv.LUT(result, color_map[:, 1])
74
+ c3 = cv.LUT(result, color_map[:, 2])
75
+ pseudo_img = np.dstack((c1, c2, c3))
76
+
77
+ vis_result = cv.addWeighted(image, weight, pseudo_img, 1 - weight, 0)
78
+
79
+ if fps is not None:
80
+ cv.putText(vis_result, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
81
+
82
+ return vis_result
83
+
84
+
85
+ if __name__ == '__main__':
86
+ # Instantiate PPHumanSeg
87
+ model = PPHumanSeg(modelPath=args.model)
88
+
89
+ if args.input is not None:
90
+ # Read image and resize to 192x192
91
+ image = cv.imread(args.input)
92
+ h, w, _ = image.shape
93
+ image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
94
+ _image = cv.resize(image, dsize=(192, 192))
95
+
96
+ # Inference
97
+ result = model.infer(_image)
98
+ result = cv.resize(result[0, :, :], dsize=(w, h), interpolation=cv.INTER_NEAREST)
99
+
100
+ # Draw results on the input image
101
+ image = visualize(image, result)
102
+
103
+ # Save results if save is true
104
+ if args.save:
105
+ print('Results saved to result.jpg\n')
106
+ cv.imwrite('result.jpg', image)
107
+
108
+ # Visualize results in a new window
109
+ if args.vis:
110
+ cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
111
+ cv.imshow(args.input, image)
112
+ cv.waitKey(0)
113
+ else: # Omit input to call default camera
114
+ deviceId = 0
115
+ cap = cv.VideoCapture(deviceId)
116
+ w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
117
+ h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
118
+
119
+ tm = cv.TickMeter()
120
+ while cv.waitKey(1) < 0:
121
+ hasFrame, frame = cap.read()
122
+ if not hasFrame:
123
+ print('No frames grabbed!')
124
+ break
125
+
126
+ _frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
127
+ _frame = cv.resize(_frame, dsize=(192, 192))
128
+
129
+ # Inference
130
+ tm.start()
131
+ result = model.infer(_frame)
132
+ tm.stop()
133
+ result = cv.resize(result[0, :, :], dsize=(w, h), interpolation=cv.INTER_NEAREST)
134
+
135
+ # Draw results on the input image
136
+ frame = visualize(frame, result, fps=tm.getFPS())
137
+
138
+ # Visualize results in a new window
139
+ cv.imshow('PPHumanSeg Demo', frame)
140
+
141
+ tm.reset()
models/human_segmentation_pphumanseg/pphumanseg.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is part of OpenCV Zoo project.
2
+ # It is subject to the license terms in the LICENSE file found in the same directory.
3
+ #
4
+ # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
5
+ # Third party copyrights are property of their respective owners.
6
+
7
+ import numpy as np
8
+ import cv2 as cv
9
+
10
+ class PPHumanSeg:
11
+ def __init__(self, modelPath):
12
+ self._modelPath = modelPath
13
+ self._model = cv.dnn.readNet(self._modelPath)
14
+
15
+ self._inputNames = ''
16
+ self._outputNames = ['save_infer_model/scale_0.tmp_1']
17
+ self._inputSize = [192, 192]
18
+ self._mean = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
19
+ self._std = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
20
+
21
+ @property
22
+ def name(self):
23
+ return self.__class__.__name__
24
+
25
+ def setBackend(self, backend_id):
26
+ self._model.setPreferableBackend(backend_id)
27
+
28
+ def setTarget(self, target_id):
29
+ self._model.setPreferableTarget(target_id)
30
+
31
+ def _preprocess(self, image):
32
+ image = image.astype(np.float32, copy=False) / 255.0
33
+ image -= self._mean
34
+ image /= self._std
35
+ return cv.dnn.blobFromImage(image)
36
+
37
+ def infer(self, image):
38
+ assert image.shape[0] == self._inputSize[1], '{} (height of input image) != {} (preset height)'.format(image.shape[0], self._inputSize[1])
39
+ assert image.shape[1] == self._inputSize[0], '{} (width of input image) != {} (preset width)'.format(image.shape[1], self._inputSize[0])
40
+
41
+ # Preprocess
42
+ inputBlob = self._preprocess(image)
43
+
44
+ # Forward
45
+ self._model.setInput(inputBlob, self._inputNames)
46
+ outputBlob = self._model.forward(self._outputNames)
47
+
48
+ # Postprocess
49
+ results = self._postprocess(outputBlob)
50
+
51
+ return results
52
+
53
+ def _postprocess(self, outputBlob):
54
+ result = np.argmax(outputBlob[0], axis=1).astype(np.uint8)
55
+ return result