Yuantao Feng
add PPHumanSeg from PaddleHub conversion (#5)
9e6c549
raw
history blame
1.97 kB
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import numpy as np
import cv2 as cv
class PPHumanSeg:
def __init__(self, modelPath):
self._modelPath = modelPath
self._model = cv.dnn.readNet(self._modelPath)
self._inputNames = ''
self._outputNames = ['save_infer_model/scale_0.tmp_1']
self._inputSize = [192, 192]
self._mean = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
self._std = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
@property
def name(self):
return self.__class__.__name__
def setBackend(self, backend_id):
self._model.setPreferableBackend(backend_id)
def setTarget(self, target_id):
self._model.setPreferableTarget(target_id)
def _preprocess(self, image):
image = image.astype(np.float32, copy=False) / 255.0
image -= self._mean
image /= self._std
return cv.dnn.blobFromImage(image)
def infer(self, image):
assert image.shape[0] == self._inputSize[1], '{} (height of input image) != {} (preset height)'.format(image.shape[0], self._inputSize[1])
assert image.shape[1] == self._inputSize[0], '{} (width of input image) != {} (preset width)'.format(image.shape[1], self._inputSize[0])
# Preprocess
inputBlob = self._preprocess(image)
# Forward
self._model.setInput(inputBlob, self._inputNames)
outputBlob = self._model.forward(self._outputNames)
# Postprocess
results = self._postprocess(outputBlob)
return results
def _postprocess(self, outputBlob):
result = np.argmax(outputBlob[0], axis=1).astype(np.uint8)
return result