Yuantao Feng
Update to OpenCV APIs (YuNet -> FaceDetectorYN, SFace -> FaceRecognizerSF) (#6)
3af1dea
# This file is part of OpenCV Zoo project. | |
# It is subject to the license terms in the LICENSE file found in the same directory. | |
# | |
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. | |
# Third party copyrights are property of their respective owners. | |
import numpy as np | |
import cv2 as cv | |
from _testcapi import FLT_MIN | |
class SFace: | |
def __init__(self, modelPath, disType=0, backendId=0, targetId=0): | |
self._modelPath = modelPath | |
self._backendId = backendId | |
self._targetId = targetId | |
self._model = cv.FaceRecognizerSF.create( | |
model=self._modelPath, | |
config="", | |
backend_id=self._backendId, | |
target_id=self._targetId) | |
self._disType = disType # 0: cosine similarity, 1: Norm-L2 distance | |
assert self._disType in [0, 1], "0: Cosine similarity, 1: norm-L2 distance, others: invalid" | |
self._threshold_cosine = 0.363 | |
self._threshold_norml2 = 1.128 | |
def name(self): | |
return self.__class__.__name__ | |
def setBackend(self, backendId): | |
self._backendId = backendId | |
self._model = cv.FaceRecognizerSF.create( | |
model=self._modelPath, | |
config="", | |
backend_id=self._backendId, | |
target_id=self._targetId) | |
def setTarget(self, targetId): | |
self._targetId = targetId | |
self._model = cv.FaceRecognizerSF.create( | |
model=self._modelPath, | |
config="", | |
backend_id=self._backendId, | |
target_id=self._targetId) | |
def _preprocess(self, image, bbox): | |
return self._model.alignCrop(image, bbox) | |
def infer(self, image, bbox): | |
# Preprocess | |
inputBlob = self._preprocess(image, bbox) | |
# Forward | |
features = self._model.feature(inputBlob) | |
return features | |
def match(self, image1, face1, image2, face2): | |
feature1 = self.infer(image1, face1) | |
feature2 = self.infer(image2, face2) | |
if self._disType == 0: # COSINE | |
cosine_score = self._model.match(feature1, feature2, self._disType) | |
return 1 if cosine_score >= self._threshold_cosine else 0 | |
else: # NORM_L2 | |
norml2_distance = self._model.match(feature1, feature2, self._disType) | |
return 1 if norml2_distance <= self._threshold_norml2 else 0 |