Sidd1609
Merge pull request #103 from Sidd1609:NanoDet
da19665
raw
history blame
7.21 kB
import numpy as np
import cv2
import argparse
from nanodet import NanoDet
def str2bool(v):
if v.lower() in ['on', 'yes', 'true', 'y', 't']:
return True
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
return False
else:
raise NotImplementedError
backends = [cv2.dnn.DNN_BACKEND_OPENCV, cv2.dnn.DNN_BACKEND_CUDA]
targets = [cv2.dnn.DNN_TARGET_CPU, cv2.dnn.DNN_TARGET_CUDA, cv2.dnn.DNN_TARGET_CUDA_FP16]
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
try:
backends += [cv2.dnn.DNN_BACKEND_TIMVX]
targets += [cv2.dnn.DNN_TARGET_NPU]
help_msg_backends += "; {:d}: TIMVX"
help_msg_targets += "; {:d}: NPU"
except:
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')
classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')
def letterbox(srcimg, target_size=(416, 416)):
img = srcimg.copy()
top, left, newh, neww = 0, 0, target_size[0], target_size[1]
if img.shape[0] != img.shape[1]:
hw_scale = img.shape[0] / img.shape[1]
if hw_scale > 1:
newh, neww = target_size[0], int(target_size[1] / hw_scale)
img = cv2.resize(img, (neww, newh), interpolation=cv2.INTER_AREA)
left = int((target_size[1] - neww) * 0.5)
img = cv2.copyMakeBorder(img, 0, 0, left, target_size[1] - neww - left, cv2.BORDER_CONSTANT, value=0) # add border
else:
newh, neww = int(target_size[0] * hw_scale), target_size[1]
img = cv2.resize(img, (neww, newh), interpolation=cv2.INTER_AREA)
top = int((target_size[0] - newh) * 0.5)
img = cv2.copyMakeBorder(img, top, target_size[0] - newh - top, 0, 0, cv2.BORDER_CONSTANT, value=0)
else:
img = cv2.resize(img, target_size, interpolation=cv2.INTER_AREA)
letterbox_scale = [top, left, newh, neww]
return img, letterbox_scale
def unletterbox(bbox, original_image_shape, letterbox_scale):
ret = bbox.copy()
h, w = original_image_shape
top, left, newh, neww = letterbox_scale
if h == w:
ratio = h / newh
ret = ret * ratio
return ret
ratioh, ratiow = h / newh, w / neww
ret[0] = max((ret[0] - left) * ratiow, 0)
ret[1] = max((ret[1] - top) * ratioh, 0)
ret[2] = min((ret[2] - left) * ratiow, w)
ret[3] = min((ret[3] - top) * ratioh, h)
return ret.astype(np.int32)
def vis(preds, res_img, letterbox_scale, fps=None):
ret = res_img.copy()
# draw FPS
if fps is not None:
fps_label = "FPS: %.2f" % fps
cv2.putText(ret, fps_label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
# draw bboxes and labels
for pred in preds:
bbox = pred[:4]
conf = pred[-2]
classid = pred[-1].astype(np.int32)
# bbox
xmin, ymin, xmax, ymax = unletterbox(bbox, ret.shape[:2], letterbox_scale)
cv2.rectangle(ret, (xmin, ymin), (xmax, ymax), (0, 255, 0), thickness=2)
# label
label = "{:s}: {:.2f}".format(classes[classid], conf)
cv2.putText(ret, label, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
return ret
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Nanodet inference using OpenCV an contribution by Sri Siddarth Chakaravarthy part of GSOC_2022')
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='object_detection_nanodet_2022nov.onnx', help="Path to the model")
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
parser.add_argument('--confidence', default=0.35, type=float, help='Class confidence')
parser.add_argument('--nms', default=0.6, type=float, help='Enter nms IOU threshold')
parser.add_argument('--save', '-s', type=str2bool, default=False, help='Set true to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
model = NanoDet(modelPath= args.model,
prob_threshold=args.confidence,
iou_threshold=args.nms,
backend_id=args.backend,
target_id=args.target)
tm = cv2.TickMeter()
tm.reset()
if args.input is not None:
image = cv2.imread(args.input)
input_blob = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Letterbox transformation
input_blob, letterbox_scale = letterbox(input_blob)
# Inference
tm.start()
preds = model.infer(input_blob)
tm.stop()
print("Inference time: {:.2f} ms".format(tm.getTimeMilli()))
img = vis(preds, image, letterbox_scale)
if args.save:
print('Resutls saved to result.jpg\n')
cv2.imwrite('result.jpg', img)
if args.vis:
cv2.namedWindow(args.input, cv2.WINDOW_AUTOSIZE)
cv2.imshow(args.input, img)
cv2.waitKey(0)
else:
print("Press any key to stop video capture")
deviceId = 0
cap = cv2.VideoCapture(deviceId)
while cv2.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
input_blob = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
input_blob, letterbox_scale = letterbox(input_blob)
# Inference
tm.start()
preds = model.infer(input_blob)
tm.stop()
img = vis(preds, frame, letterbox_scale, fps=tm.getFPS())
cv2.imshow("NanoDet Demo", img)
tm.reset()