|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import os |
|
import numpy as np |
|
|
|
from sklearn.model_selection import KFold |
|
from scipy import interpolate |
|
import sklearn |
|
from sklearn.decomposition import PCA |
|
|
|
import cv2 as cv |
|
from tqdm import tqdm |
|
|
|
|
|
def calculate_roc(thresholds, |
|
embeddings1, |
|
embeddings2, |
|
actual_issame, |
|
nrof_folds=10, |
|
pca=0): |
|
assert (embeddings1.shape[0] == embeddings2.shape[0]) |
|
assert (embeddings1.shape[1] == embeddings2.shape[1]) |
|
nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) |
|
nrof_thresholds = len(thresholds) |
|
k_fold = KFold(n_splits=nrof_folds, shuffle=False) |
|
|
|
tprs = np.zeros((nrof_folds, nrof_thresholds)) |
|
fprs = np.zeros((nrof_folds, nrof_thresholds)) |
|
accuracy = np.zeros((nrof_folds)) |
|
indices = np.arange(nrof_pairs) |
|
|
|
|
|
if pca == 0: |
|
diff = np.subtract(embeddings1, embeddings2) |
|
dist = np.sum(np.square(diff), 1) |
|
|
|
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): |
|
|
|
|
|
if pca > 0: |
|
print('doing pca on', fold_idx) |
|
embed1_train = embeddings1[train_set] |
|
embed2_train = embeddings2[train_set] |
|
_embed_train = np.concatenate((embed1_train, embed2_train), axis=0) |
|
|
|
pca_model = PCA(n_components=pca) |
|
pca_model.fit(_embed_train) |
|
embed1 = pca_model.transform(embeddings1) |
|
embed2 = pca_model.transform(embeddings2) |
|
embed1 = sklearn.preprocessing.normalize(embed1) |
|
embed2 = sklearn.preprocessing.normalize(embed2) |
|
|
|
diff = np.subtract(embed1, embed2) |
|
dist = np.sum(np.square(diff), 1) |
|
|
|
|
|
acc_train = np.zeros((nrof_thresholds)) |
|
for threshold_idx, threshold in enumerate(thresholds): |
|
_, _, acc_train[threshold_idx] = calculate_accuracy( |
|
threshold, dist[train_set], actual_issame[train_set]) |
|
best_threshold_index = np.argmax(acc_train) |
|
for threshold_idx, threshold in enumerate(thresholds): |
|
tprs[fold_idx, |
|
threshold_idx], fprs[fold_idx, |
|
threshold_idx], _ = calculate_accuracy( |
|
threshold, dist[test_set], |
|
actual_issame[test_set]) |
|
_, _, accuracy[fold_idx] = calculate_accuracy( |
|
thresholds[best_threshold_index], dist[test_set], |
|
actual_issame[test_set]) |
|
|
|
tpr = np.mean(tprs, 0) |
|
fpr = np.mean(fprs, 0) |
|
return tpr, fpr, accuracy |
|
|
|
|
|
def calculate_accuracy(threshold, dist, actual_issame): |
|
predict_issame = np.less(dist, threshold) |
|
tp = np.sum(np.logical_and(predict_issame, actual_issame)) |
|
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) |
|
tn = np.sum( |
|
np.logical_and(np.logical_not(predict_issame), |
|
np.logical_not(actual_issame))) |
|
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame)) |
|
|
|
tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn) |
|
fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn) |
|
acc = float(tp + tn) / dist.size |
|
return tpr, fpr, acc |
|
|
|
|
|
def calculate_val(thresholds, |
|
embeddings1, |
|
embeddings2, |
|
actual_issame, |
|
far_target, |
|
nrof_folds=10): |
|
assert (embeddings1.shape[0] == embeddings2.shape[0]) |
|
assert (embeddings1.shape[1] == embeddings2.shape[1]) |
|
nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) |
|
nrof_thresholds = len(thresholds) |
|
k_fold = KFold(n_splits=nrof_folds, shuffle=False) |
|
|
|
val = np.zeros(nrof_folds) |
|
far = np.zeros(nrof_folds) |
|
|
|
diff = np.subtract(embeddings1, embeddings2) |
|
dist = np.sum(np.square(diff), 1) |
|
indices = np.arange(nrof_pairs) |
|
|
|
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): |
|
|
|
|
|
far_train = np.zeros(nrof_thresholds) |
|
for threshold_idx, threshold in enumerate(thresholds): |
|
_, far_train[threshold_idx] = calculate_val_far( |
|
threshold, dist[train_set], actual_issame[train_set]) |
|
if np.max(far_train) >= far_target: |
|
f = interpolate.interp1d(far_train, thresholds, kind='slinear') |
|
threshold = f(far_target) |
|
else: |
|
threshold = 0.0 |
|
|
|
val[fold_idx], far[fold_idx] = calculate_val_far( |
|
threshold, dist[test_set], actual_issame[test_set]) |
|
|
|
val_mean = np.mean(val) |
|
far_mean = np.mean(far) |
|
val_std = np.std(val) |
|
return val_mean, val_std, far_mean |
|
|
|
|
|
def calculate_val_far(threshold, dist, actual_issame): |
|
predict_issame = np.less(dist, threshold) |
|
true_accept = np.sum(np.logical_and(predict_issame, actual_issame)) |
|
false_accept = np.sum( |
|
np.logical_and(predict_issame, np.logical_not(actual_issame))) |
|
n_same = np.sum(actual_issame) |
|
n_diff = np.sum(np.logical_not(actual_issame)) |
|
val = float(true_accept) / float(n_same) |
|
far = float(false_accept) / float(n_diff) |
|
return val, far |
|
|
|
|
|
def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0): |
|
|
|
thresholds = np.arange(0, 4, 0.01) |
|
embeddings1 = embeddings[0::2] |
|
embeddings2 = embeddings[1::2] |
|
tpr, fpr, accuracy = calculate_roc(thresholds, |
|
embeddings1, |
|
embeddings2, |
|
np.asarray(actual_issame), |
|
nrof_folds=nrof_folds, |
|
pca=pca) |
|
thresholds = np.arange(0, 4, 0.001) |
|
val, val_std, far = calculate_val(thresholds, |
|
embeddings1, |
|
embeddings2, |
|
np.asarray(actual_issame), |
|
1e-3, |
|
nrof_folds=nrof_folds) |
|
return tpr, fpr, accuracy, val, val_std, far |
|
|
|
|
|
class LFW: |
|
def __init__(self, root, target_size=250): |
|
self.LFW_IMAGE_SIZE = 250 |
|
|
|
self.lfw_root = root |
|
self.target_size = target_size |
|
|
|
self.lfw_pairs_path = os.path.join(self.lfw_root, 'view2/pairs.txt') |
|
self.image_path_pattern = os.path.join(self.lfw_root, 'lfw', '{person_name}', '{image_name}') |
|
|
|
self.lfw_image_paths, self.id_list = self.load_pairs() |
|
|
|
@property |
|
def name(self): |
|
return 'LFW' |
|
|
|
def __len__(self): |
|
return len(self.lfw_image_paths) |
|
|
|
@property |
|
def ids(self): |
|
return self.id_list |
|
|
|
def load_pairs(self): |
|
image_paths = [] |
|
id_list = [] |
|
with open(self.lfw_pairs_path, 'r') as f: |
|
for line in f.readlines()[1:]: |
|
line = line.strip().split() |
|
if len(line) == 3: |
|
person_name = line[0] |
|
image1_name = '{}_{:04d}.jpg'.format(person_name, int(line[1])) |
|
image2_name = '{}_{:04d}.jpg'.format(person_name, int(line[2])) |
|
image_paths += [ |
|
self.image_path_pattern.format(person_name=person_name, image_name=image1_name), |
|
self.image_path_pattern.format(person_name=person_name, image_name=image2_name) |
|
] |
|
id_list.append(True) |
|
elif len(line) == 4: |
|
person1_name = line[0] |
|
image1_name = '{}_{:04d}.jpg'.format(person1_name, int(line[1])) |
|
person2_name = line[2] |
|
image2_name = '{}_{:04d}.jpg'.format(person2_name, int(line[3])) |
|
image_paths += [ |
|
self.image_path_pattern.format(person_name=person1_name, image_name=image1_name), |
|
self.image_path_pattern.format(person_name=person2_name, image_name=image2_name) |
|
] |
|
id_list.append(False) |
|
return image_paths, id_list |
|
|
|
def __getitem__(self, key): |
|
img = cv.imread(self.lfw_image_paths[key]) |
|
if self.target_size != self.LFW_IMAGE_SIZE: |
|
img = cv.resize(img, (self.target_size, self.target_size)) |
|
return img |
|
|
|
def eval(self, model): |
|
ids = self.ids |
|
embeddings = np.zeros(shape=(len(self), 128)) |
|
face_bboxes = np.load("./datasets/lfw_face_bboxes.npy") |
|
for idx, img in tqdm(enumerate(self), desc="Evaluating {} with {} val set".format(model.name, self.name)): |
|
embedding = model.infer(img, face_bboxes[idx]) |
|
embeddings[idx] = embedding |
|
|
|
embeddings = sklearn.preprocessing.normalize(embeddings) |
|
self.tpr, self.fpr, self.acc, self.val, self.std, self.far = evaluate(embeddings, ids, nrof_folds=10) |
|
self.acc, self.std = np.mean(self.acc), np.std(self.acc) |
|
|
|
def print_result(self): |
|
print("==================== Results ====================") |
|
print("Average Accuracy: {:.4f}".format(self.acc)) |
|
print("=================================================") |
|
|