Wanli
Add script to evaluate face recognition by LFW (#72)
f2e3176
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
from sklearn.model_selection import KFold
from scipy import interpolate
import sklearn
from sklearn.decomposition import PCA
import cv2 as cv
from tqdm import tqdm
def calculate_roc(thresholds,
embeddings1,
embeddings2,
actual_issame,
nrof_folds=10,
pca=0):
assert (embeddings1.shape[0] == embeddings2.shape[0])
assert (embeddings1.shape[1] == embeddings2.shape[1])
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
k_fold = KFold(n_splits=nrof_folds, shuffle=False)
tprs = np.zeros((nrof_folds, nrof_thresholds))
fprs = np.zeros((nrof_folds, nrof_thresholds))
accuracy = np.zeros((nrof_folds))
indices = np.arange(nrof_pairs)
# print('pca', pca)
if pca == 0:
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff), 1)
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
# print('train_set', train_set)
# print('test_set', test_set)
if pca > 0:
print('doing pca on', fold_idx)
embed1_train = embeddings1[train_set]
embed2_train = embeddings2[train_set]
_embed_train = np.concatenate((embed1_train, embed2_train), axis=0)
# print(_embed_train.shape)
pca_model = PCA(n_components=pca)
pca_model.fit(_embed_train)
embed1 = pca_model.transform(embeddings1)
embed2 = pca_model.transform(embeddings2)
embed1 = sklearn.preprocessing.normalize(embed1)
embed2 = sklearn.preprocessing.normalize(embed2)
# print(embed1.shape, embed2.shape)
diff = np.subtract(embed1, embed2)
dist = np.sum(np.square(diff), 1)
# Find the best threshold for the fold
acc_train = np.zeros((nrof_thresholds))
for threshold_idx, threshold in enumerate(thresholds):
_, _, acc_train[threshold_idx] = calculate_accuracy(
threshold, dist[train_set], actual_issame[train_set])
best_threshold_index = np.argmax(acc_train)
for threshold_idx, threshold in enumerate(thresholds):
tprs[fold_idx,
threshold_idx], fprs[fold_idx,
threshold_idx], _ = calculate_accuracy(
threshold, dist[test_set],
actual_issame[test_set])
_, _, accuracy[fold_idx] = calculate_accuracy(
thresholds[best_threshold_index], dist[test_set],
actual_issame[test_set])
tpr = np.mean(tprs, 0)
fpr = np.mean(fprs, 0)
return tpr, fpr, accuracy
def calculate_accuracy(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
tp = np.sum(np.logical_and(predict_issame, actual_issame))
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
tn = np.sum(
np.logical_and(np.logical_not(predict_issame),
np.logical_not(actual_issame)))
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn)
fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn)
acc = float(tp + tn) / dist.size
return tpr, fpr, acc
def calculate_val(thresholds,
embeddings1,
embeddings2,
actual_issame,
far_target,
nrof_folds=10):
assert (embeddings1.shape[0] == embeddings2.shape[0])
assert (embeddings1.shape[1] == embeddings2.shape[1])
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
k_fold = KFold(n_splits=nrof_folds, shuffle=False)
val = np.zeros(nrof_folds)
far = np.zeros(nrof_folds)
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff), 1)
indices = np.arange(nrof_pairs)
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
# Find the threshold that gives FAR = far_target
far_train = np.zeros(nrof_thresholds)
for threshold_idx, threshold in enumerate(thresholds):
_, far_train[threshold_idx] = calculate_val_far(
threshold, dist[train_set], actual_issame[train_set])
if np.max(far_train) >= far_target:
f = interpolate.interp1d(far_train, thresholds, kind='slinear')
threshold = f(far_target)
else:
threshold = 0.0
val[fold_idx], far[fold_idx] = calculate_val_far(
threshold, dist[test_set], actual_issame[test_set])
val_mean = np.mean(val)
far_mean = np.mean(far)
val_std = np.std(val)
return val_mean, val_std, far_mean
def calculate_val_far(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
false_accept = np.sum(
np.logical_and(predict_issame, np.logical_not(actual_issame)))
n_same = np.sum(actual_issame)
n_diff = np.sum(np.logical_not(actual_issame))
val = float(true_accept) / float(n_same)
far = float(false_accept) / float(n_diff)
return val, far
def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0):
# Calculate evaluation metrics
thresholds = np.arange(0, 4, 0.01)
embeddings1 = embeddings[0::2]
embeddings2 = embeddings[1::2]
tpr, fpr, accuracy = calculate_roc(thresholds,
embeddings1,
embeddings2,
np.asarray(actual_issame),
nrof_folds=nrof_folds,
pca=pca)
thresholds = np.arange(0, 4, 0.001)
val, val_std, far = calculate_val(thresholds,
embeddings1,
embeddings2,
np.asarray(actual_issame),
1e-3,
nrof_folds=nrof_folds)
return tpr, fpr, accuracy, val, val_std, far
class LFW:
def __init__(self, root, target_size=250):
self.LFW_IMAGE_SIZE = 250
self.lfw_root = root
self.target_size = target_size
self.lfw_pairs_path = os.path.join(self.lfw_root, 'view2/pairs.txt')
self.image_path_pattern = os.path.join(self.lfw_root, 'lfw', '{person_name}', '{image_name}')
self.lfw_image_paths, self.id_list = self.load_pairs()
@property
def name(self):
return 'LFW'
def __len__(self):
return len(self.lfw_image_paths)
@property
def ids(self):
return self.id_list
def load_pairs(self):
image_paths = []
id_list = []
with open(self.lfw_pairs_path, 'r') as f:
for line in f.readlines()[1:]:
line = line.strip().split()
if len(line) == 3:
person_name = line[0]
image1_name = '{}_{:04d}.jpg'.format(person_name, int(line[1]))
image2_name = '{}_{:04d}.jpg'.format(person_name, int(line[2]))
image_paths += [
self.image_path_pattern.format(person_name=person_name, image_name=image1_name),
self.image_path_pattern.format(person_name=person_name, image_name=image2_name)
]
id_list.append(True)
elif len(line) == 4:
person1_name = line[0]
image1_name = '{}_{:04d}.jpg'.format(person1_name, int(line[1]))
person2_name = line[2]
image2_name = '{}_{:04d}.jpg'.format(person2_name, int(line[3]))
image_paths += [
self.image_path_pattern.format(person_name=person1_name, image_name=image1_name),
self.image_path_pattern.format(person_name=person2_name, image_name=image2_name)
]
id_list.append(False)
return image_paths, id_list
def __getitem__(self, key):
img = cv.imread(self.lfw_image_paths[key])
if self.target_size != self.LFW_IMAGE_SIZE:
img = cv.resize(img, (self.target_size, self.target_size))
return img
def eval(self, model):
ids = self.ids
embeddings = np.zeros(shape=(len(self), 128))
face_bboxes = np.load("./datasets/lfw_face_bboxes.npy")
for idx, img in tqdm(enumerate(self), desc="Evaluating {} with {} val set".format(model.name, self.name)):
embedding = model.infer(img, face_bboxes[idx])
embeddings[idx] = embedding
embeddings = sklearn.preprocessing.normalize(embeddings)
self.tpr, self.fpr, self.acc, self.val, self.std, self.far = evaluate(embeddings, ids, nrof_folds=10)
self.acc, self.std = np.mean(self.acc), np.std(self.acc)
def print_result(self):
print("==================== Results ====================")
print("Average Accuracy: {:.4f}".format(self.acc))
print("=================================================")