Wanli
commited on
Commit
·
f2e3176
1
Parent(s):
60ba673
Add script to evaluate face recognition by LFW (#72)
Browse files- models/face_recognition_sface/README.md +11 -0
- tools/eval/README.md +44 -0
- tools/eval/datasets/__init__.py +2 -0
- tools/eval/datasets/lfw.py +239 -0
- tools/eval/eval.py +14 -2
models/face_recognition_sface/README.md
CHANGED
@@ -7,6 +7,16 @@ Note:
|
|
7 |
- [face_recognition_sface_2021sep.onnx](./face_recognition_sface_2021sep.onnx) is converted from the model from https://github.com/zhongyy/SFace thanks to [Chengrui Wang](https://github.com/crywang).
|
8 |
- Support 5-landmark warpping for now (2021sep)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
## Demo
|
11 |
|
12 |
***NOTE***: This demo uses [../face_detection_yunet](../face_detection_yunet) as face detector, which supports 5-landmark detection for now (2021sep).
|
@@ -17,6 +27,7 @@ Run the following command to try the demo:
|
|
17 |
python demo.py --input1 /path/to/image1 --input2 /path/to/image2
|
18 |
```
|
19 |
|
|
|
20 |
## License
|
21 |
|
22 |
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
|
|
7 |
- [face_recognition_sface_2021sep.onnx](./face_recognition_sface_2021sep.onnx) is converted from the model from https://github.com/zhongyy/SFace thanks to [Chengrui Wang](https://github.com/crywang).
|
8 |
- Support 5-landmark warpping for now (2021sep)
|
9 |
|
10 |
+
Results of accuracy evaluation with [tools/eval](../../tools/eval).
|
11 |
+
|
12 |
+
| Models | Accuracy |
|
13 |
+
|-------------|----------|
|
14 |
+
| SFace | 0.9940 |
|
15 |
+
| SFace quant | 0.9932 |
|
16 |
+
|
17 |
+
\*: 'quant' stands for 'quantized'.
|
18 |
+
|
19 |
+
|
20 |
## Demo
|
21 |
|
22 |
***NOTE***: This demo uses [../face_detection_yunet](../face_detection_yunet) as face detector, which supports 5-landmark detection for now (2021sep).
|
|
|
27 |
python demo.py --input1 /path/to/image1 --input2 /path/to/image2
|
28 |
```
|
29 |
|
30 |
+
|
31 |
## License
|
32 |
|
33 |
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
tools/eval/README.md
CHANGED
@@ -4,6 +4,7 @@ Make sure you have the following packages installed:
|
|
4 |
|
5 |
```shell
|
6 |
pip install tqdm
|
|
|
7 |
pip install scipy
|
8 |
```
|
9 |
|
@@ -14,8 +15,10 @@ python eval.py -m model_name -d dataset_name -dr dataset_root_dir
|
|
14 |
```
|
15 |
|
16 |
Supported datasets:
|
|
|
17 |
- [ImageNet](#imagenet)
|
18 |
- [WIDERFace](#widerface)
|
|
|
19 |
|
20 |
## ImageNet
|
21 |
|
@@ -94,3 +97,44 @@ Run evaluation with the following command:
|
|
94 |
```shell
|
95 |
python eval.py -m yunet -d widerface -dr /path/to/widerface
|
96 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
```shell
|
6 |
pip install tqdm
|
7 |
+
pip install scikit-learn
|
8 |
pip install scipy
|
9 |
```
|
10 |
|
|
|
15 |
```
|
16 |
|
17 |
Supported datasets:
|
18 |
+
|
19 |
- [ImageNet](#imagenet)
|
20 |
- [WIDERFace](#widerface)
|
21 |
+
- [LFW](#lfw)
|
22 |
|
23 |
## ImageNet
|
24 |
|
|
|
97 |
```shell
|
98 |
python eval.py -m yunet -d widerface -dr /path/to/widerface
|
99 |
```
|
100 |
+
|
101 |
+
## LFW
|
102 |
+
|
103 |
+
The script is modified based on [evaluation of InsightFace](https://github.com/deepinsight/insightface/blob/f92bf1e48470fdd567e003f196f8ff70461f7a20/src/eval/lfw.py).
|
104 |
+
|
105 |
+
This evaluation uses [YuNet](../../models/face_detection_yunet) as face detector. The structure of the face bounding boxes saved in [lfw_face_bboxes.npy](../eval/datasets/lfw_face_bboxes.npy) is shown below.
|
106 |
+
Each row represents the bounding box of the main face that will be used in each image.
|
107 |
+
|
108 |
+
```shell
|
109 |
+
[
|
110 |
+
[x, y, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm],
|
111 |
+
...
|
112 |
+
[x, y, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm]
|
113 |
+
]
|
114 |
+
```
|
115 |
+
|
116 |
+
`x1, y1, w, h` are the top-left coordinates, width and height of the face bounding box, `{x, y}_{re, le, nt, rcm, lcm}` stands for the coordinates of right eye, left eye, nose tip, the right corner and left corner of the mouth respectively. Data type of this numpy array is `np.float32`.
|
117 |
+
|
118 |
+
|
119 |
+
### Prepare data
|
120 |
+
|
121 |
+
Please visit http://vis-www.cs.umass.edu/lfw to download the LFW [all images](http://vis-www.cs.umass.edu/lfw/lfw.tgz)(needs to be decompressed) and [pairs.txt](http://vis-www.cs.umass.edu/lfw/pairs.txt)(needs to be placed in the `view2` folder). Organize files as follow:
|
122 |
+
|
123 |
+
```shell
|
124 |
+
$ tree -L 2 /path/to/lfw
|
125 |
+
.
|
126 |
+
├── lfw
|
127 |
+
│ ├── Aaron_Eckhart
|
128 |
+
│ ├── ...
|
129 |
+
│ └── Zydrunas_Ilgauskas
|
130 |
+
└── view2
|
131 |
+
└── pairs.txt
|
132 |
+
```
|
133 |
+
|
134 |
+
### Evaluation
|
135 |
+
|
136 |
+
Run evaluation with the following command:
|
137 |
+
|
138 |
+
```shell
|
139 |
+
python eval.py -m sface -d lfw -dr /path/to/lfw
|
140 |
+
```
|
tools/eval/datasets/__init__.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from .imagenet import ImageNet
|
2 |
from .widerface import WIDERFace
|
|
|
3 |
|
4 |
class Registery:
|
5 |
def __init__(self, name):
|
@@ -15,3 +16,4 @@ class Registery:
|
|
15 |
DATASETS = Registery("Datasets")
|
16 |
DATASETS.register(ImageNet)
|
17 |
DATASETS.register(WIDERFace)
|
|
|
|
1 |
from .imagenet import ImageNet
|
2 |
from .widerface import WIDERFace
|
3 |
+
from .lfw import LFW
|
4 |
|
5 |
class Registery:
|
6 |
def __init__(self, name):
|
|
|
16 |
DATASETS = Registery("Datasets")
|
17 |
DATASETS.register(ImageNet)
|
18 |
DATASETS.register(WIDERFace)
|
19 |
+
DATASETS.register(LFW)
|
tools/eval/datasets/lfw.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import
|
2 |
+
from __future__ import division
|
3 |
+
from __future__ import print_function
|
4 |
+
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from sklearn.model_selection import KFold
|
9 |
+
from scipy import interpolate
|
10 |
+
import sklearn
|
11 |
+
from sklearn.decomposition import PCA
|
12 |
+
|
13 |
+
import cv2 as cv
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
|
17 |
+
def calculate_roc(thresholds,
|
18 |
+
embeddings1,
|
19 |
+
embeddings2,
|
20 |
+
actual_issame,
|
21 |
+
nrof_folds=10,
|
22 |
+
pca=0):
|
23 |
+
assert (embeddings1.shape[0] == embeddings2.shape[0])
|
24 |
+
assert (embeddings1.shape[1] == embeddings2.shape[1])
|
25 |
+
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
|
26 |
+
nrof_thresholds = len(thresholds)
|
27 |
+
k_fold = KFold(n_splits=nrof_folds, shuffle=False)
|
28 |
+
|
29 |
+
tprs = np.zeros((nrof_folds, nrof_thresholds))
|
30 |
+
fprs = np.zeros((nrof_folds, nrof_thresholds))
|
31 |
+
accuracy = np.zeros((nrof_folds))
|
32 |
+
indices = np.arange(nrof_pairs)
|
33 |
+
# print('pca', pca)
|
34 |
+
|
35 |
+
if pca == 0:
|
36 |
+
diff = np.subtract(embeddings1, embeddings2)
|
37 |
+
dist = np.sum(np.square(diff), 1)
|
38 |
+
|
39 |
+
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
|
40 |
+
# print('train_set', train_set)
|
41 |
+
# print('test_set', test_set)
|
42 |
+
if pca > 0:
|
43 |
+
print('doing pca on', fold_idx)
|
44 |
+
embed1_train = embeddings1[train_set]
|
45 |
+
embed2_train = embeddings2[train_set]
|
46 |
+
_embed_train = np.concatenate((embed1_train, embed2_train), axis=0)
|
47 |
+
# print(_embed_train.shape)
|
48 |
+
pca_model = PCA(n_components=pca)
|
49 |
+
pca_model.fit(_embed_train)
|
50 |
+
embed1 = pca_model.transform(embeddings1)
|
51 |
+
embed2 = pca_model.transform(embeddings2)
|
52 |
+
embed1 = sklearn.preprocessing.normalize(embed1)
|
53 |
+
embed2 = sklearn.preprocessing.normalize(embed2)
|
54 |
+
# print(embed1.shape, embed2.shape)
|
55 |
+
diff = np.subtract(embed1, embed2)
|
56 |
+
dist = np.sum(np.square(diff), 1)
|
57 |
+
|
58 |
+
# Find the best threshold for the fold
|
59 |
+
acc_train = np.zeros((nrof_thresholds))
|
60 |
+
for threshold_idx, threshold in enumerate(thresholds):
|
61 |
+
_, _, acc_train[threshold_idx] = calculate_accuracy(
|
62 |
+
threshold, dist[train_set], actual_issame[train_set])
|
63 |
+
best_threshold_index = np.argmax(acc_train)
|
64 |
+
for threshold_idx, threshold in enumerate(thresholds):
|
65 |
+
tprs[fold_idx,
|
66 |
+
threshold_idx], fprs[fold_idx,
|
67 |
+
threshold_idx], _ = calculate_accuracy(
|
68 |
+
threshold, dist[test_set],
|
69 |
+
actual_issame[test_set])
|
70 |
+
_, _, accuracy[fold_idx] = calculate_accuracy(
|
71 |
+
thresholds[best_threshold_index], dist[test_set],
|
72 |
+
actual_issame[test_set])
|
73 |
+
|
74 |
+
tpr = np.mean(tprs, 0)
|
75 |
+
fpr = np.mean(fprs, 0)
|
76 |
+
return tpr, fpr, accuracy
|
77 |
+
|
78 |
+
|
79 |
+
def calculate_accuracy(threshold, dist, actual_issame):
|
80 |
+
predict_issame = np.less(dist, threshold)
|
81 |
+
tp = np.sum(np.logical_and(predict_issame, actual_issame))
|
82 |
+
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
|
83 |
+
tn = np.sum(
|
84 |
+
np.logical_and(np.logical_not(predict_issame),
|
85 |
+
np.logical_not(actual_issame)))
|
86 |
+
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
|
87 |
+
|
88 |
+
tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn)
|
89 |
+
fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn)
|
90 |
+
acc = float(tp + tn) / dist.size
|
91 |
+
return tpr, fpr, acc
|
92 |
+
|
93 |
+
|
94 |
+
def calculate_val(thresholds,
|
95 |
+
embeddings1,
|
96 |
+
embeddings2,
|
97 |
+
actual_issame,
|
98 |
+
far_target,
|
99 |
+
nrof_folds=10):
|
100 |
+
assert (embeddings1.shape[0] == embeddings2.shape[0])
|
101 |
+
assert (embeddings1.shape[1] == embeddings2.shape[1])
|
102 |
+
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
|
103 |
+
nrof_thresholds = len(thresholds)
|
104 |
+
k_fold = KFold(n_splits=nrof_folds, shuffle=False)
|
105 |
+
|
106 |
+
val = np.zeros(nrof_folds)
|
107 |
+
far = np.zeros(nrof_folds)
|
108 |
+
|
109 |
+
diff = np.subtract(embeddings1, embeddings2)
|
110 |
+
dist = np.sum(np.square(diff), 1)
|
111 |
+
indices = np.arange(nrof_pairs)
|
112 |
+
|
113 |
+
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
|
114 |
+
|
115 |
+
# Find the threshold that gives FAR = far_target
|
116 |
+
far_train = np.zeros(nrof_thresholds)
|
117 |
+
for threshold_idx, threshold in enumerate(thresholds):
|
118 |
+
_, far_train[threshold_idx] = calculate_val_far(
|
119 |
+
threshold, dist[train_set], actual_issame[train_set])
|
120 |
+
if np.max(far_train) >= far_target:
|
121 |
+
f = interpolate.interp1d(far_train, thresholds, kind='slinear')
|
122 |
+
threshold = f(far_target)
|
123 |
+
else:
|
124 |
+
threshold = 0.0
|
125 |
+
|
126 |
+
val[fold_idx], far[fold_idx] = calculate_val_far(
|
127 |
+
threshold, dist[test_set], actual_issame[test_set])
|
128 |
+
|
129 |
+
val_mean = np.mean(val)
|
130 |
+
far_mean = np.mean(far)
|
131 |
+
val_std = np.std(val)
|
132 |
+
return val_mean, val_std, far_mean
|
133 |
+
|
134 |
+
|
135 |
+
def calculate_val_far(threshold, dist, actual_issame):
|
136 |
+
predict_issame = np.less(dist, threshold)
|
137 |
+
true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
|
138 |
+
false_accept = np.sum(
|
139 |
+
np.logical_and(predict_issame, np.logical_not(actual_issame)))
|
140 |
+
n_same = np.sum(actual_issame)
|
141 |
+
n_diff = np.sum(np.logical_not(actual_issame))
|
142 |
+
val = float(true_accept) / float(n_same)
|
143 |
+
far = float(false_accept) / float(n_diff)
|
144 |
+
return val, far
|
145 |
+
|
146 |
+
|
147 |
+
def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0):
|
148 |
+
# Calculate evaluation metrics
|
149 |
+
thresholds = np.arange(0, 4, 0.01)
|
150 |
+
embeddings1 = embeddings[0::2]
|
151 |
+
embeddings2 = embeddings[1::2]
|
152 |
+
tpr, fpr, accuracy = calculate_roc(thresholds,
|
153 |
+
embeddings1,
|
154 |
+
embeddings2,
|
155 |
+
np.asarray(actual_issame),
|
156 |
+
nrof_folds=nrof_folds,
|
157 |
+
pca=pca)
|
158 |
+
thresholds = np.arange(0, 4, 0.001)
|
159 |
+
val, val_std, far = calculate_val(thresholds,
|
160 |
+
embeddings1,
|
161 |
+
embeddings2,
|
162 |
+
np.asarray(actual_issame),
|
163 |
+
1e-3,
|
164 |
+
nrof_folds=nrof_folds)
|
165 |
+
return tpr, fpr, accuracy, val, val_std, far
|
166 |
+
|
167 |
+
|
168 |
+
class LFW:
|
169 |
+
def __init__(self, root, target_size=250):
|
170 |
+
self.LFW_IMAGE_SIZE = 250
|
171 |
+
|
172 |
+
self.lfw_root = root
|
173 |
+
self.target_size = target_size
|
174 |
+
|
175 |
+
self.lfw_pairs_path = os.path.join(self.lfw_root, 'view2/pairs.txt')
|
176 |
+
self.image_path_pattern = os.path.join(self.lfw_root, 'lfw', '{person_name}', '{image_name}')
|
177 |
+
|
178 |
+
self.lfw_image_paths, self.id_list = self.load_pairs()
|
179 |
+
|
180 |
+
@property
|
181 |
+
def name(self):
|
182 |
+
return 'LFW'
|
183 |
+
|
184 |
+
def __len__(self):
|
185 |
+
return len(self.lfw_image_paths)
|
186 |
+
|
187 |
+
@property
|
188 |
+
def ids(self):
|
189 |
+
return self.id_list
|
190 |
+
|
191 |
+
def load_pairs(self):
|
192 |
+
image_paths = []
|
193 |
+
id_list = []
|
194 |
+
with open(self.lfw_pairs_path, 'r') as f:
|
195 |
+
for line in f.readlines()[1:]:
|
196 |
+
line = line.strip().split()
|
197 |
+
if len(line) == 3:
|
198 |
+
person_name = line[0]
|
199 |
+
image1_name = '{}_{:04d}.jpg'.format(person_name, int(line[1]))
|
200 |
+
image2_name = '{}_{:04d}.jpg'.format(person_name, int(line[2]))
|
201 |
+
image_paths += [
|
202 |
+
self.image_path_pattern.format(person_name=person_name, image_name=image1_name),
|
203 |
+
self.image_path_pattern.format(person_name=person_name, image_name=image2_name)
|
204 |
+
]
|
205 |
+
id_list.append(True)
|
206 |
+
elif len(line) == 4:
|
207 |
+
person1_name = line[0]
|
208 |
+
image1_name = '{}_{:04d}.jpg'.format(person1_name, int(line[1]))
|
209 |
+
person2_name = line[2]
|
210 |
+
image2_name = '{}_{:04d}.jpg'.format(person2_name, int(line[3]))
|
211 |
+
image_paths += [
|
212 |
+
self.image_path_pattern.format(person_name=person1_name, image_name=image1_name),
|
213 |
+
self.image_path_pattern.format(person_name=person2_name, image_name=image2_name)
|
214 |
+
]
|
215 |
+
id_list.append(False)
|
216 |
+
return image_paths, id_list
|
217 |
+
|
218 |
+
def __getitem__(self, key):
|
219 |
+
img = cv.imread(self.lfw_image_paths[key])
|
220 |
+
if self.target_size != self.LFW_IMAGE_SIZE:
|
221 |
+
img = cv.resize(img, (self.target_size, self.target_size))
|
222 |
+
return img
|
223 |
+
|
224 |
+
def eval(self, model):
|
225 |
+
ids = self.ids
|
226 |
+
embeddings = np.zeros(shape=(len(self), 128))
|
227 |
+
face_bboxes = np.load("./datasets/lfw_face_bboxes.npy")
|
228 |
+
for idx, img in tqdm(enumerate(self), desc="Evaluating {} with {} val set".format(model.name, self.name)):
|
229 |
+
embedding = model.infer(img, face_bboxes[idx])
|
230 |
+
embeddings[idx] = embedding
|
231 |
+
|
232 |
+
embeddings = sklearn.preprocessing.normalize(embeddings)
|
233 |
+
self.tpr, self.fpr, self.acc, self.val, self.std, self.far = evaluate(embeddings, ids, nrof_folds=10)
|
234 |
+
self.acc, self.std = np.mean(self.acc), np.std(self.acc)
|
235 |
+
|
236 |
+
def print_result(self):
|
237 |
+
print("==================== Results ====================")
|
238 |
+
print("Average Accuracy: {:.4f}".format(self.acc))
|
239 |
+
print("=================================================")
|
tools/eval/eval.py
CHANGED
@@ -64,7 +64,15 @@ models = dict(
|
|
64 |
modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar-act_int8-wt_int8-quantized.onnx"),
|
65 |
topK=5000,
|
66 |
confThreshold=0.3,
|
67 |
-
nmsThreshold=0.45)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
)
|
69 |
|
70 |
datasets = dict(
|
@@ -74,7 +82,11 @@ datasets = dict(
|
|
74 |
size=224),
|
75 |
widerface=dict(
|
76 |
name="WIDERFace",
|
77 |
-
topic="face_detection")
|
|
|
|
|
|
|
|
|
78 |
)
|
79 |
|
80 |
def main(args):
|
|
|
64 |
modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar-act_int8-wt_int8-quantized.onnx"),
|
65 |
topK=5000,
|
66 |
confThreshold=0.3,
|
67 |
+
nmsThreshold=0.45),
|
68 |
+
sface=dict(
|
69 |
+
name="SFace",
|
70 |
+
topic="face_recognition",
|
71 |
+
modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec.onnx")),
|
72 |
+
sface_q=dict(
|
73 |
+
name="SFace",
|
74 |
+
topic="face_recognition",
|
75 |
+
modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec-act_int8-wt_int8-quantized.onnx")),
|
76 |
)
|
77 |
|
78 |
datasets = dict(
|
|
|
82 |
size=224),
|
83 |
widerface=dict(
|
84 |
name="WIDERFace",
|
85 |
+
topic="face_detection"),
|
86 |
+
lfw=dict(
|
87 |
+
name="LFW",
|
88 |
+
topic="face_recognition",
|
89 |
+
target_size=112),
|
90 |
)
|
91 |
|
92 |
def main(args):
|