|
import os |
|
import tqdm |
|
import pickle |
|
import numpy as np |
|
from scipy.io import loadmat |
|
import cv2 as cv |
|
|
|
|
|
def get_gt_boxes(gt_dir): |
|
""" gt dir: (wider_face_val.mat, wider_easy_val.mat, wider_medium_val.mat, wider_hard_val.mat)""" |
|
|
|
gt_mat = loadmat(os.path.join(gt_dir, 'wider_face_val.mat')) |
|
hard_mat = loadmat(os.path.join(gt_dir, 'wider_hard_val.mat')) |
|
medium_mat = loadmat(os.path.join(gt_dir, 'wider_medium_val.mat')) |
|
easy_mat = loadmat(os.path.join(gt_dir, 'wider_easy_val.mat')) |
|
|
|
facebox_list = gt_mat['face_bbx_list'] |
|
event_list = gt_mat['event_list'] |
|
file_list = gt_mat['file_list'] |
|
|
|
hard_gt_list = hard_mat['gt_list'] |
|
medium_gt_list = medium_mat['gt_list'] |
|
easy_gt_list = easy_mat['gt_list'] |
|
|
|
return facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list |
|
|
|
|
|
def get_gt_boxes_from_txt(gt_path, cache_dir): |
|
cache_file = os.path.join(cache_dir, 'gt_cache.pkl') |
|
if os.path.exists(cache_file): |
|
f = open(cache_file, 'rb') |
|
boxes = pickle.load(f) |
|
f.close() |
|
return boxes |
|
|
|
f = open(gt_path, 'r') |
|
state = 0 |
|
lines = f.readlines() |
|
lines = list(map(lambda x: x.rstrip('\r\n'), lines)) |
|
boxes = {} |
|
print(len(lines)) |
|
f.close() |
|
current_boxes = [] |
|
current_name = None |
|
for line in lines: |
|
if state == 0 and '--' in line: |
|
state = 1 |
|
current_name = line |
|
continue |
|
if state == 1: |
|
state = 2 |
|
continue |
|
|
|
if state == 2 and '--' in line: |
|
state = 1 |
|
boxes[current_name] = np.array(current_boxes).astype('float32') |
|
current_name = line |
|
current_boxes = [] |
|
continue |
|
|
|
if state == 2: |
|
box = [float(x) for x in line.split(' ')[:4]] |
|
current_boxes.append(box) |
|
continue |
|
|
|
f = open(cache_file, 'wb') |
|
pickle.dump(boxes, f) |
|
f.close() |
|
return boxes |
|
|
|
|
|
def norm_score(pred): |
|
""" norm score |
|
pred {key: [[x1,y1,x2,y2,s]]} |
|
""" |
|
|
|
max_score = 0 |
|
min_score = 1 |
|
|
|
for _, k in pred.items(): |
|
for _, v in k.items(): |
|
if len(v) == 0: |
|
continue |
|
_min = np.min(v[:, -1]) |
|
_max = np.max(v[:, -1]) |
|
max_score = max(_max, max_score) |
|
min_score = min(_min, min_score) |
|
|
|
diff = max_score - min_score |
|
for _, k in pred.items(): |
|
for _, v in k.items(): |
|
if len(v) == 0: |
|
continue |
|
v[:, -1] = (v[:, -1] - min_score) / diff |
|
|
|
|
|
def bbox_overlaps(a, b): |
|
""" |
|
return iou of a and b, numpy version for data augenmentation |
|
""" |
|
lt = np.maximum(a[:, np.newaxis, 0:2], b[:, 0:2]) |
|
rb = np.minimum(a[:, np.newaxis, 2:4], b[:, 2:4]) |
|
|
|
area_i = np.prod(rb - lt + 1, axis=2) * (lt < rb).all(axis=2) |
|
area_a = np.prod(a[:, 2:4] - a[:, 0:2] + 1, axis=1) |
|
area_b = np.prod(b[:, 2:4] - b[:, 0:2] + 1, axis=1) |
|
return area_i / (area_a[:, np.newaxis] + area_b - area_i) |
|
|
|
|
|
def image_eval(pred, gt, ignore, iou_thresh): |
|
""" single image evaluation |
|
pred: Nx5 |
|
gt: Nx4 |
|
ignore: |
|
""" |
|
|
|
_pred = pred.copy() |
|
_gt = gt.copy() |
|
pred_recall = np.zeros(_pred.shape[0]) |
|
recall_list = np.zeros(_gt.shape[0]) |
|
proposal_list = np.ones(_pred.shape[0]) |
|
|
|
_pred[:, 2] = _pred[:, 2] + _pred[:, 0] |
|
_pred[:, 3] = _pred[:, 3] + _pred[:, 1] |
|
_gt[:, 2] = _gt[:, 2] + _gt[:, 0] |
|
_gt[:, 3] = _gt[:, 3] + _gt[:, 1] |
|
|
|
overlaps = bbox_overlaps(_pred[:, :4], _gt) |
|
|
|
for h in range(_pred.shape[0]): |
|
|
|
gt_overlap = overlaps[h] |
|
max_overlap, max_idx = gt_overlap.max(), gt_overlap.argmax() |
|
if max_overlap >= iou_thresh: |
|
if ignore[max_idx] == 0: |
|
recall_list[max_idx] = -1 |
|
proposal_list[h] = -1 |
|
elif recall_list[max_idx] == 0: |
|
recall_list[max_idx] = 1 |
|
|
|
r_keep_index = np.where(recall_list == 1)[0] |
|
pred_recall[h] = len(r_keep_index) |
|
return pred_recall, proposal_list |
|
|
|
|
|
def img_pr_info(thresh_num, pred_info, proposal_list, pred_recall): |
|
pr_info = np.zeros((thresh_num, 2)).astype('float') |
|
for t in range(thresh_num): |
|
|
|
thresh = 1 - (t + 1) / thresh_num |
|
r_index = np.where(pred_info[:, 4] >= thresh)[0] |
|
if len(r_index) == 0: |
|
pr_info[t, 0] = 0 |
|
pr_info[t, 1] = 0 |
|
else: |
|
r_index = r_index[-1] |
|
p_index = np.where(proposal_list[:r_index + 1] == 1)[0] |
|
pr_info[t, 0] = len(p_index) |
|
pr_info[t, 1] = pred_recall[r_index] |
|
return pr_info |
|
|
|
|
|
def dataset_pr_info(thresh_num, pr_curve, count_face): |
|
_pr_curve = np.zeros((thresh_num, 2)) |
|
for i in range(thresh_num): |
|
_pr_curve[i, 0] = pr_curve[i, 1] / pr_curve[i, 0] |
|
_pr_curve[i, 1] = pr_curve[i, 1] / count_face |
|
return _pr_curve |
|
|
|
|
|
def voc_ap(rec, prec): |
|
|
|
|
|
mrec = np.concatenate(([0.], rec, [1.])) |
|
mpre = np.concatenate(([0.], prec, [0.])) |
|
|
|
|
|
for i in range(mpre.size - 1, 0, -1): |
|
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) |
|
|
|
|
|
|
|
i = np.where(mrec[1:] != mrec[:-1])[0] |
|
|
|
|
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
|
return ap |
|
|
|
|
|
def evaluation(pred, gt_path, iou_thresh=0.5): |
|
norm_score(pred) |
|
facebox_list, event_list, file_list, hard_gt_list, medium_gt_list, easy_gt_list = get_gt_boxes(gt_path) |
|
event_num = len(event_list) |
|
thresh_num = 1000 |
|
settings = ['easy', 'medium', 'hard'] |
|
setting_gts = [easy_gt_list, medium_gt_list, hard_gt_list] |
|
aps = [] |
|
for setting_id in range(3): |
|
|
|
gt_list = setting_gts[setting_id] |
|
count_face = 0 |
|
pr_curve = np.zeros((thresh_num, 2)).astype('float') |
|
|
|
pbar = tqdm.tqdm(range(event_num)) |
|
for i in pbar: |
|
pbar.set_description('Processing {}'.format(settings[setting_id])) |
|
event_name = str(event_list[i][0][0]) |
|
img_list = file_list[i][0] |
|
pred_list = pred[event_name] |
|
sub_gt_list = gt_list[i][0] |
|
|
|
gt_bbx_list = facebox_list[i][0] |
|
|
|
for j in range(len(img_list)): |
|
pred_info = pred_list[str(img_list[j][0][0])] |
|
|
|
gt_boxes = gt_bbx_list[j][0].astype('float') |
|
keep_index = sub_gt_list[j][0] |
|
count_face += len(keep_index) |
|
|
|
if len(gt_boxes) == 0 or len(pred_info) == 0: |
|
continue |
|
ignore = np.zeros(gt_boxes.shape[0]) |
|
if len(keep_index) != 0: |
|
ignore[keep_index - 1] = 1 |
|
pred_recall, proposal_list = image_eval(pred_info, gt_boxes, ignore, iou_thresh) |
|
|
|
_img_pr_info = img_pr_info(thresh_num, pred_info, proposal_list, pred_recall) |
|
|
|
pr_curve += _img_pr_info |
|
pr_curve = dataset_pr_info(thresh_num, pr_curve, count_face) |
|
|
|
propose = pr_curve[:, 0] |
|
recall = pr_curve[:, 1] |
|
|
|
ap = voc_ap(recall, propose) |
|
aps.append(ap) |
|
return aps |
|
|
|
|
|
class WIDERFace: |
|
def __init__(self, root, split='val'): |
|
self.aps = [] |
|
self.widerface_root = root |
|
self._split = split |
|
|
|
self.widerface_img_paths = { |
|
'val': os.path.join(self.widerface_root, 'WIDER_val', 'images'), |
|
'test': os.path.join(self.widerface_root, 'WIDER_test', 'images') |
|
} |
|
|
|
self.widerface_split_fpaths = { |
|
'val': os.path.join(self.widerface_root, 'wider_face_split', 'wider_face_val.mat'), |
|
'test': os.path.join(self.widerface_root, 'wider_face_split', 'wider_face_test.mat') |
|
} |
|
self.img_list, self.num_img = self.load_list() |
|
|
|
@property |
|
def name(self): |
|
return self.__class__.__name__ |
|
|
|
def load_list(self): |
|
n_imgs = 0 |
|
flist = [] |
|
|
|
split_fpath = self.widerface_split_fpaths[self._split] |
|
img_path = self.widerface_img_paths[self._split] |
|
|
|
anno_data = loadmat(split_fpath) |
|
event_list = anno_data.get('event_list') |
|
file_list = anno_data.get('file_list') |
|
|
|
for event_idx, event in enumerate(event_list): |
|
event_name = event[0][0] |
|
for f_idx, f in enumerate(file_list[event_idx][0]): |
|
f_name = f[0][0] |
|
f_path = os.path.join(img_path, event_name, f_name + '.jpg') |
|
flist.append(f_path) |
|
n_imgs += 1 |
|
|
|
return flist, n_imgs |
|
|
|
def __getitem__(self, index): |
|
img = cv.imread(self.img_list[index]) |
|
event, name = self.img_list[index].split(os.sep)[-2:] |
|
return event, name, img |
|
|
|
def eval(self, model): |
|
results_list = dict() |
|
pbar = tqdm.tqdm(self) |
|
pbar.set_description_str("Evaluating {} with {} val set".format(model.name, self.name)) |
|
|
|
for event_name, img_name, img in pbar: |
|
img_shape = [img.shape[1], img.shape[0]] |
|
model.setInputSize(img_shape) |
|
det = model.infer(img) |
|
|
|
if not results_list.get(event_name): |
|
results_list[event_name] = dict() |
|
|
|
if det is None: |
|
det = np.array([[10, 10, 20, 20, 0.002]]) |
|
else: |
|
det = np.append(np.around(det[:, :4], 1), np.around(det[:, -1], 3).reshape(-1, 1), axis=1) |
|
|
|
results_list[event_name][img_name.rstrip('.jpg')] = det |
|
|
|
self.aps = evaluation(results_list, os.path.join(self.widerface_root, 'eval_tools', 'ground_truth')) |
|
|
|
def print_result(self): |
|
print("==================== Results ====================") |
|
print("Easy Val AP: {}".format(self.aps[0])) |
|
print("Medium Val AP: {}".format(self.aps[1])) |
|
print("Hard Val AP: {}".format(self.aps[2])) |
|
print("=================================================") |
|
|