Wanli
commited on
Commit
·
160af44
1
Parent(s):
ea63088
Add 'load_label' parameter for image classification models (#185)
Browse files* add 'load_label' parameter for image classification models
* move load_label flag to initializer
models/image_classification_mobilenet/demo.py
CHANGED
@@ -31,13 +31,16 @@ parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
|
31 |
{:d}: TIM-VX + NPU,
|
32 |
{:d}: CANN + NPU
|
33 |
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
|
|
|
|
34 |
args = parser.parse_args()
|
35 |
|
36 |
if __name__ == '__main__':
|
37 |
backend_id = backend_target_pairs[args.backend_target][0]
|
38 |
target_id = backend_target_pairs[args.backend_target][1]
|
|
|
39 |
# Instantiate MobileNet
|
40 |
-
model = MobileNet(modelPath=args.model, backendId=backend_id, targetId=target_id)
|
41 |
|
42 |
# Read image and get a 224x224 crop from a 256x256 resized
|
43 |
image = cv.imread(args.input)
|
|
|
31 |
{:d}: TIM-VX + NPU,
|
32 |
{:d}: CANN + NPU
|
33 |
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
34 |
+
parser.add_argument('--top_k', type=int, default=1,
|
35 |
+
help='Usage: Get top k predictions.')
|
36 |
args = parser.parse_args()
|
37 |
|
38 |
if __name__ == '__main__':
|
39 |
backend_id = backend_target_pairs[args.backend_target][0]
|
40 |
target_id = backend_target_pairs[args.backend_target][1]
|
41 |
+
top_k = args.top_k
|
42 |
# Instantiate MobileNet
|
43 |
+
model = MobileNet(modelPath=args.model, topK=top_k, backendId=backend_id, targetId=target_id)
|
44 |
|
45 |
# Read image and get a 224x224 crop from a 256x256 resized
|
46 |
image = cv.imread(args.input)
|
models/image_classification_mobilenet/mobilenet.py
CHANGED
@@ -6,10 +6,11 @@ class MobileNet:
|
|
6 |
Works with MobileNet V1 & V2.
|
7 |
'''
|
8 |
|
9 |
-
def __init__(self, modelPath, topK=1, backendId=0, targetId=0):
|
10 |
self.model_path = modelPath
|
11 |
assert topK >= 1
|
12 |
self.top_k = topK
|
|
|
13 |
self.backend_id = backendId
|
14 |
self.target_id = targetId
|
15 |
|
@@ -64,7 +65,7 @@ class MobileNet:
|
|
64 |
for o in output_blob:
|
65 |
class_id_list = o.argsort()[::-1][:self.top_k]
|
66 |
batched_class_id_list.append(class_id_list)
|
67 |
-
if len(self._labels) > 0:
|
68 |
batched_predicted_labels = []
|
69 |
for class_id_list in batched_class_id_list:
|
70 |
predicted_labels = []
|
|
|
6 |
Works with MobileNet V1 & V2.
|
7 |
'''
|
8 |
|
9 |
+
def __init__(self, modelPath, topK=1, loadLabel=True, backendId=0, targetId=0):
|
10 |
self.model_path = modelPath
|
11 |
assert topK >= 1
|
12 |
self.top_k = topK
|
13 |
+
self.load_label = loadLabel
|
14 |
self.backend_id = backendId
|
15 |
self.target_id = targetId
|
16 |
|
|
|
65 |
for o in output_blob:
|
66 |
class_id_list = o.argsort()[::-1][:self.top_k]
|
67 |
batched_class_id_list.append(class_id_list)
|
68 |
+
if len(self._labels) > 0 and self.load_label:
|
69 |
batched_predicted_labels = []
|
70 |
for class_id_list in batched_class_id_list:
|
71 |
predicted_labels = []
|
models/image_classification_ppresnet/demo.py
CHANGED
@@ -37,13 +37,16 @@ parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
|
37 |
{:d}: TIM-VX + NPU,
|
38 |
{:d}: CANN + NPU
|
39 |
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
|
|
|
|
40 |
args = parser.parse_args()
|
41 |
|
42 |
if __name__ == '__main__':
|
43 |
backend_id = backend_target_pairs[args.backend_target][0]
|
44 |
target_id = backend_target_pairs[args.backend_target][1]
|
|
|
45 |
# Instantiate ResNet
|
46 |
-
model = PPResNet(modelPath=args.model, backendId=backend_id, targetId=target_id)
|
47 |
|
48 |
# Read image and get a 224x224 crop from a 256x256 resized
|
49 |
image = cv.imread(args.input)
|
|
|
37 |
{:d}: TIM-VX + NPU,
|
38 |
{:d}: CANN + NPU
|
39 |
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
40 |
+
parser.add_argument('--top_k', type=int, default=1,
|
41 |
+
help='Usage: Get top k predictions.')
|
42 |
args = parser.parse_args()
|
43 |
|
44 |
if __name__ == '__main__':
|
45 |
backend_id = backend_target_pairs[args.backend_target][0]
|
46 |
target_id = backend_target_pairs[args.backend_target][1]
|
47 |
+
top_k = args.top_k
|
48 |
# Instantiate ResNet
|
49 |
+
model = PPResNet(modelPath=args.model, topK=top_k, backendId=backend_id, targetId=target_id)
|
50 |
|
51 |
# Read image and get a 224x224 crop from a 256x256 resized
|
52 |
image = cv.imread(args.input)
|
models/image_classification_ppresnet/ppresnet.py
CHANGED
@@ -9,10 +9,11 @@ import numpy as np
|
|
9 |
import cv2 as cv
|
10 |
|
11 |
class PPResNet:
|
12 |
-
def __init__(self, modelPath, topK=1, backendId=0, targetId=0):
|
13 |
self._modelPath = modelPath
|
14 |
assert topK >= 1
|
15 |
self._topK = topK
|
|
|
16 |
self._backendId = backendId
|
17 |
self._targetId = targetId
|
18 |
|
@@ -69,7 +70,7 @@ class PPResNet:
|
|
69 |
for ob in outputBlob:
|
70 |
class_id_list = ob.argsort()[::-1][:self._topK]
|
71 |
batched_class_id_list.append(class_id_list)
|
72 |
-
if len(self._labels) > 0:
|
73 |
batched_predicted_labels = []
|
74 |
for class_id_list in batched_class_id_list:
|
75 |
predicted_labels = []
|
|
|
9 |
import cv2 as cv
|
10 |
|
11 |
class PPResNet:
|
12 |
+
def __init__(self, modelPath, topK=1, loadLabel=True, backendId=0, targetId=0):
|
13 |
self._modelPath = modelPath
|
14 |
assert topK >= 1
|
15 |
self._topK = topK
|
16 |
+
self._load_label = loadLabel
|
17 |
self._backendId = backendId
|
18 |
self._targetId = targetId
|
19 |
|
|
|
70 |
for ob in outputBlob:
|
71 |
class_id_list = ob.argsort()[::-1][:self._topK]
|
72 |
batched_class_id_list.append(class_id_list)
|
73 |
+
if len(self._labels) > 0 and self._load_label:
|
74 |
batched_predicted_labels = []
|
75 |
for class_id_list in batched_class_id_list:
|
76 |
predicted_labels = []
|
tools/eval/eval.py
CHANGED
@@ -25,32 +25,38 @@ models = dict(
|
|
25 |
name="MobileNet",
|
26 |
topic="image_classification",
|
27 |
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx"),
|
28 |
-
topK=5
|
|
|
29 |
mobilenetv1_q=dict(
|
30 |
name="MobileNet",
|
31 |
topic="image_classification",
|
32 |
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr_int8.onnx"),
|
33 |
-
topK=5
|
|
|
34 |
mobilenetv2=dict(
|
35 |
name="MobileNet",
|
36 |
topic="image_classification",
|
37 |
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx"),
|
38 |
-
topK=5
|
|
|
39 |
mobilenetv2_q=dict(
|
40 |
name="MobileNet",
|
41 |
topic="image_classification",
|
42 |
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr_int8.onnx"),
|
43 |
-
topK=5
|
|
|
44 |
ppresnet=dict(
|
45 |
name="PPResNet",
|
46 |
topic="image_classification",
|
47 |
modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx"),
|
48 |
-
topK=5
|
|
|
49 |
ppresnet_q=dict(
|
50 |
name="PPResNet",
|
51 |
topic="image_classification",
|
52 |
modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan_int8.onnx"),
|
53 |
-
topK=5
|
|
|
54 |
yunet=dict(
|
55 |
name="YuNet",
|
56 |
topic="face_detection",
|
|
|
25 |
name="MobileNet",
|
26 |
topic="image_classification",
|
27 |
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx"),
|
28 |
+
topK=5,
|
29 |
+
loadLabel=False),
|
30 |
mobilenetv1_q=dict(
|
31 |
name="MobileNet",
|
32 |
topic="image_classification",
|
33 |
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr_int8.onnx"),
|
34 |
+
topK=5,
|
35 |
+
loadLabel=False),
|
36 |
mobilenetv2=dict(
|
37 |
name="MobileNet",
|
38 |
topic="image_classification",
|
39 |
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx"),
|
40 |
+
topK=5,
|
41 |
+
loadLabel=False),
|
42 |
mobilenetv2_q=dict(
|
43 |
name="MobileNet",
|
44 |
topic="image_classification",
|
45 |
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr_int8.onnx"),
|
46 |
+
topK=5,
|
47 |
+
loadLabel=False),
|
48 |
ppresnet=dict(
|
49 |
name="PPResNet",
|
50 |
topic="image_classification",
|
51 |
modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx"),
|
52 |
+
topK=5,
|
53 |
+
loadLabel=False),
|
54 |
ppresnet_q=dict(
|
55 |
name="PPResNet",
|
56 |
topic="image_classification",
|
57 |
modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan_int8.onnx"),
|
58 |
+
topK=5,
|
59 |
+
loadLabel=False),
|
60 |
yunet=dict(
|
61 |
name="YuNet",
|
62 |
topic="face_detection",
|