Zihao Mu commited on
Commit
335417a
·
1 Parent(s): 86cd32d

Update README.md (#49)

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -23,8 +23,8 @@ Guidelines:
23
  | [CRNN-EN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 | 196.15 | 125.30 | --- |
24
  | [CRNN-CN](./models/text_recognition_crnn) | 100x32 | 73.52 | 322.16 | 239.76 | 166.79 | --- |
25
  | [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58 | 98.64 | 75.45 | --- |
26
- | [MobileNet-V1](./models/image_classification_mobilenet)| 224x224 | 9.04 | 92.25 | 33.18 | 145.66 | --- |
27
- | [MobileNet-V2](./models/image_classification_mobilenet)| 224x224 | 8.86 | 74.03 | 31.92 | 146.31 | --- |
28
  | [PP-HumanSeg](./models/human_segmentation_pphumanseg) | 192x192 | 19.92 | 105.32 | 67.97 | 74.77 | --- |
29
  | [WeChatQRCode](./models/qrcode_wechatqrcode) | 100x100 | 7.04 | 37.68 | --- | --- | --- |
30
  | [DaSiamRPN](./models/object_tracking_dasiamrpn) | 1280x720 | 36.15 | 705.48 | 76.82 | --- | --- |
@@ -34,7 +34,7 @@ Hardware Setup:
34
  - `INTEL-CPU`: [Intel Core i7-5930K](https://www.intel.com/content/www/us/en/products/sku/82931/intel-core-i75930k-processor-15m-cache-up-to-3-70-ghz/specifications.html) @ 3.50GHz, 6 cores, 12 threads.
35
  - `RPI-CPU`: [Raspberry Pi 4B](https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/), Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz.
36
  - `JETSON-GPU`: [NVIDIA Jetson Nano B01](https://developer.nvidia.com/embedded/jetson-nano-developer-kit), 128-core NVIDIA Maxwell GPU.
37
- - `KV3-NPU`: [Khadas VIM3](https://www.khadas.com/vim3), 5TOPS Performance. Benchmarks are done using **quantized** models. [TIM-VX backend and NPU target support for OpenCV](https://github.com/opencv/opencv/pull/21036) is under reivew. You will need to compile OpenCV with TIM-VX following [this guide](https://gist.github.com/zihaomu/f040be4901d92e423f227c10dfa37650) to run benchmarks.
38
  - `D1-CPU`: [Allwinner D1](https://d1.docs.aw-ol.com/en), [Xuantie C906 CPU](https://www.t-head.cn/product/C906?spm=a2ouz.12986968.0.0.7bfc1384auGNPZ) (RISC-V, RVV 0.7.1) @ 1.0GHz, 1 core. YuNet is supported for now. Visit [here](https://github.com/fengyuentau/opencv_zoo_cpp) for more details.
39
 
40
  ***Important Notes***:
 
23
  | [CRNN-EN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 | 196.15 | 125.30 | --- |
24
  | [CRNN-CN](./models/text_recognition_crnn) | 100x32 | 73.52 | 322.16 | 239.76 | 166.79 | --- |
25
  | [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58 | 98.64 | 75.45 | --- |
26
+ | [MobileNet-V1](./models/image_classification_mobilenet)| 224x224 | 9.04 | 92.25 | 33.18 | 145.66 (per-channel) | --- |
27
+ | [MobileNet-V2](./models/image_classification_mobilenet)| 224x224 | 8.86 | 74.03 | 31.92 | 146.31 (per-channel) | --- |
28
  | [PP-HumanSeg](./models/human_segmentation_pphumanseg) | 192x192 | 19.92 | 105.32 | 67.97 | 74.77 | --- |
29
  | [WeChatQRCode](./models/qrcode_wechatqrcode) | 100x100 | 7.04 | 37.68 | --- | --- | --- |
30
  | [DaSiamRPN](./models/object_tracking_dasiamrpn) | 1280x720 | 36.15 | 705.48 | 76.82 | --- | --- |
 
34
  - `INTEL-CPU`: [Intel Core i7-5930K](https://www.intel.com/content/www/us/en/products/sku/82931/intel-core-i75930k-processor-15m-cache-up-to-3-70-ghz/specifications.html) @ 3.50GHz, 6 cores, 12 threads.
35
  - `RPI-CPU`: [Raspberry Pi 4B](https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/), Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz.
36
  - `JETSON-GPU`: [NVIDIA Jetson Nano B01](https://developer.nvidia.com/embedded/jetson-nano-developer-kit), 128-core NVIDIA Maxwell GPU.
37
+ - `KV3-NPU`: [Khadas VIM3](https://www.khadas.com/vim3), 5TOPS Performance. Benchmarks are done using **quantized** models. You will need to compile OpenCV with TIM-VX following [this guide](https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU) to run benchmarks. The test results use the `per-tensor` quantization model by default.
38
  - `D1-CPU`: [Allwinner D1](https://d1.docs.aw-ol.com/en), [Xuantie C906 CPU](https://www.t-head.cn/product/C906?spm=a2ouz.12986968.0.0.7bfc1384auGNPZ) (RISC-V, RVV 0.7.1) @ 1.0GHz, 1 core. YuNet is supported for now. Visit [here](https://github.com/fengyuentau/opencv_zoo_cpp) for more details.
39
 
40
  ***Important Notes***: