ytfeng commited on
Commit
86cd32d
·
1 Parent(s): 9408415

update mobilenets (#48)

Browse files
README.md CHANGED
@@ -23,8 +23,8 @@ Guidelines:
23
  | [CRNN-EN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 | 196.15 | 125.30 | --- |
24
  | [CRNN-CN](./models/text_recognition_crnn) | 100x32 | 73.52 | 322.16 | 239.76 | 166.79 | --- |
25
  | [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58 | 98.64 | 75.45 | --- |
26
- | [MobileNet-V1](./models/image_classification_mobilenet)| 224x224 | 7.76 | 85.09 | 20.78 | 45.78 | --- |
27
- | [MobileNet-V2](./models/image_classification_mobilenet)| 224x224 | 7.48 | 74.45 | 23.92 | 104.05 | --- |
28
  | [PP-HumanSeg](./models/human_segmentation_pphumanseg) | 192x192 | 19.92 | 105.32 | 67.97 | 74.77 | --- |
29
  | [WeChatQRCode](./models/qrcode_wechatqrcode) | 100x100 | 7.04 | 37.68 | --- | --- | --- |
30
  | [DaSiamRPN](./models/object_tracking_dasiamrpn) | 1280x720 | 36.15 | 705.48 | 76.82 | --- | --- |
 
23
  | [CRNN-EN](./models/text_recognition_crnn) | 100x32 | 50.21 | 234.32 | 196.15 | 125.30 | --- |
24
  | [CRNN-CN](./models/text_recognition_crnn) | 100x32 | 73.52 | 322.16 | 239.76 | 166.79 | --- |
25
  | [PP-ResNet](./models/image_classification_ppresnet) | 224x224 | 56.05 | 602.58 | 98.64 | 75.45 | --- |
26
+ | [MobileNet-V1](./models/image_classification_mobilenet)| 224x224 | 9.04 | 92.25 | 33.18 | 145.66 | --- |
27
+ | [MobileNet-V2](./models/image_classification_mobilenet)| 224x224 | 8.86 | 74.03 | 31.92 | 146.31 | --- |
28
  | [PP-HumanSeg](./models/human_segmentation_pphumanseg) | 192x192 | 19.92 | 105.32 | 67.97 | 74.77 | --- |
29
  | [WeChatQRCode](./models/qrcode_wechatqrcode) | 100x100 | 7.04 | 37.68 | --- | --- | --- |
30
  | [DaSiamRPN](./models/object_tracking_dasiamrpn) | 1280x720 | 36.15 | 705.48 | 76.82 | --- | --- |
benchmark/benchmark.py CHANGED
@@ -61,9 +61,7 @@ class Benchmark:
61
  opencv=cv.dnn.DNN_BACKEND_OPENCV,
62
  # vkcom=cv.dnn.DNN_BACKEND_VKCOM,
63
  cuda=cv.dnn.DNN_BACKEND_CUDA,
64
- timvx=cv.dnn.DNN_BACKEND_TIMVX
65
  )
66
- self._backend = available_backends[backend_id]
67
 
68
  target_id = kwargs.pop('target', 'cpu')
69
  available_targets = dict(
@@ -76,8 +74,16 @@ class Benchmark:
76
  cuda=cv.dnn.DNN_TARGET_CUDA,
77
  cuda_fp16=cv.dnn.DNN_TARGET_CUDA_FP16,
78
  # hddl=cv.dnn.DNN_TARGET_HDDL,
79
- npu=cv.dnn.DNN_TARGET_NPU
80
  )
 
 
 
 
 
 
 
 
 
81
  self._target = available_targets[target_id]
82
 
83
  self._benchmark_results = dict()
 
61
  opencv=cv.dnn.DNN_BACKEND_OPENCV,
62
  # vkcom=cv.dnn.DNN_BACKEND_VKCOM,
63
  cuda=cv.dnn.DNN_BACKEND_CUDA,
 
64
  )
 
65
 
66
  target_id = kwargs.pop('target', 'cpu')
67
  available_targets = dict(
 
74
  cuda=cv.dnn.DNN_TARGET_CUDA,
75
  cuda_fp16=cv.dnn.DNN_TARGET_CUDA_FP16,
76
  # hddl=cv.dnn.DNN_TARGET_HDDL,
 
77
  )
78
+
79
+ # add extra backends & targets
80
+ try:
81
+ available_backends['timvx'] = cv.dnn.DNN_BACKEND_TIMVX
82
+ available_targets['npu'] = cv.dnn.DNN_TARGET_NPU
83
+ except:
84
+ print('OpenCV is not compiled with TIM-VX backend enbaled. See https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more details on how to enable TIM-VX backend.')
85
+
86
+ self._backend = available_backends[backend_id]
87
  self._target = available_targets[target_id]
88
 
89
  self._benchmark_results = dict()
benchmark/config/image_classification_mobilenetv1.yaml CHANGED
@@ -16,5 +16,5 @@ Benchmark:
16
 
17
  Model:
18
  name: "MobileNetV1"
19
- modelPath: "models/image_classification_mobilenet/mobilenet_v1.onnx"
20
  labelPath: "models/image_classification_mobilenet/imagenet_labels.txt"
 
16
 
17
  Model:
18
  name: "MobileNetV1"
19
+ modelPath: "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx"
20
  labelPath: "models/image_classification_mobilenet/imagenet_labels.txt"
benchmark/config/image_classification_mobilenetv2.yaml CHANGED
@@ -16,5 +16,5 @@ Benchmark:
16
 
17
  Model:
18
  name: "MobileNetV2"
19
- modelPath: "models/image_classification_mobilenet/mobilenet_v2.onnx"
20
  labelPath: "models/image_classification_mobilenet/imagenet_labels.txt"
 
16
 
17
  Model:
18
  name: "MobileNetV2"
19
+ modelPath: "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx"
20
  labelPath: "models/image_classification_mobilenet/imagenet_labels.txt"
models/image_classification_mobilenet/LICENSE CHANGED
@@ -1,29 +1,202 @@
1
- BSD 3-Clause License
2
-
3
- Copyright (c) 2017-, Shicai Yang
4
- All rights reserved.
5
-
6
- Redistribution and use in source and binary forms, with or without
7
- modification, are permitted provided that the following conditions are met:
8
-
9
- * Redistributions of source code must retain the above copyright notice, this
10
- list of conditions and the following disclaimer.
11
-
12
- * Redistributions in binary form must reproduce the above copyright notice,
13
- this list of conditions and the following disclaimer in the documentation
14
- and/or other materials provided with the distribution.
15
-
16
- * Neither the name of the copyright holder nor the names of its
17
- contributors may be used to endorse or promote products derived from
18
- this software without specific prior written permission.
19
-
20
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
models/image_classification_mobilenet/README.md CHANGED
@@ -4,14 +4,6 @@ MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applicatio
4
 
5
  MobileNetV2: Inverted Residuals and Linear Bottlenecks
6
 
7
- Models are taken from https://github.com/shicai/MobileNet-Caffe and converted to ONNX format using [caffe2onnx](https://github.com/asiryan/caffe2onnx):
8
- ```
9
- python -m caffe2onnx.convert --prototxt mobilenet_deploy.prototxt --caffemodel mobilenet.caffemodel --onnx mobilenet_v1.onnx
10
- python -m caffe2onnx.convert --prototxt mobilenet_v2_deploy.prototxt --caffemodel mobilenet_v2.caffemodel --onnx mobilenet_v2.onnx
11
- ```
12
-
13
- NOTE: Quantized MobileNet V1 & V2 have a great drop in accuracy. We are working on producing higher accuracy MobileNets.
14
-
15
  ## Demo
16
 
17
  Run the following command to try the demo:
@@ -24,12 +16,11 @@ python demo.py --input /path/to/image --model v2
24
 
25
  ## License
26
 
27
- Model weights are licensed under [BSD-3-Clause License](./LICENSE).
28
- Scripts are licensed unser [Apache 2.0 License](../../LICENSE).
29
 
30
  ## Reference
31
 
32
  - MobileNet V1: https://arxiv.org/abs/1704.04861
33
  - MobileNet V2: https://arxiv.org/abs/1801.04381
34
- - https://github.com/shicai/MobileNet-Caffe
35
-
 
4
 
5
  MobileNetV2: Inverted Residuals and Linear Bottlenecks
6
 
 
 
 
 
 
 
 
 
7
  ## Demo
8
 
9
  Run the following command to try the demo:
 
16
 
17
  ## License
18
 
19
+ All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
 
20
 
21
  ## Reference
22
 
23
  - MobileNet V1: https://arxiv.org/abs/1704.04861
24
  - MobileNet V2: https://arxiv.org/abs/1801.04381
25
+ - MobileNet V1 weight and scripts for training: https://github.com/wjc852456/pytorch-mobilenet-v1
26
+ - MobileNet V2 weight: https://github.com/onnx/models/tree/main/vision/classification/mobilenet
models/image_classification_mobilenet/mobilenet_v1.py CHANGED
@@ -15,8 +15,8 @@ class MobileNetV1:
15
  self.input_names = ''
16
  self.output_names = ''
17
  self.input_size = [224, 224]
18
- self.mean = [103.94,116.78,123.68]
19
- self.scale = 0.017
20
 
21
  # load labels
22
  self.labels = self._load_labels()
@@ -41,7 +41,11 @@ class MobileNetV1:
41
  self.model.setPreferableTarget(self.target_id)
42
 
43
  def _preprocess(self, image):
44
- return cv.dnn.blobFromImage(image, scalefactor=self.scale, size=self.input_size, mean=self.mean)
 
 
 
 
45
 
46
  def infer(self, image):
47
  # Preprocess
 
15
  self.input_names = ''
16
  self.output_names = ''
17
  self.input_size = [224, 224]
18
+ self.mean=[0.485, 0.456, 0.406]
19
+ self.std=[0.229, 0.224, 0.225]
20
 
21
  # load labels
22
  self.labels = self._load_labels()
 
41
  self.model.setPreferableTarget(self.target_id)
42
 
43
  def _preprocess(self, image):
44
+ input_blob = (image / 255.0 - self.mean) / self.std
45
+ input_blob = input_blob.transpose(2, 0, 1)
46
+ input_blob = input_blob[np.newaxis, :, :, :]
47
+ input_blob = input_blob.astype(np.float32)
48
+ return input_blob
49
 
50
  def infer(self, image):
51
  # Preprocess
models/image_classification_mobilenet/mobilenet_v2.py CHANGED
@@ -15,8 +15,8 @@ class MobileNetV2:
15
  self.input_names = ''
16
  self.output_names = ''
17
  self.input_size = [224, 224]
18
- self.mean = [103.94,116.78,123.68]
19
- self.scale = 0.017
20
 
21
  # load labels
22
  self.labels = self._load_labels()
@@ -41,7 +41,11 @@ class MobileNetV2:
41
  self.model.setPreferableTarget(self.target_id)
42
 
43
  def _preprocess(self, image):
44
- return cv.dnn.blobFromImage(image, scalefactor=self.scale, size=self.input_size, mean=self.mean)
 
 
 
 
45
 
46
  def infer(self, image):
47
  # Preprocess
 
15
  self.input_names = ''
16
  self.output_names = ''
17
  self.input_size = [224, 224]
18
+ self.mean=[0.485, 0.456, 0.406]
19
+ self.std=[0.229, 0.224, 0.225]
20
 
21
  # load labels
22
  self.labels = self._load_labels()
 
41
  self.model.setPreferableTarget(self.target_id)
42
 
43
  def _preprocess(self, image):
44
+ input_blob = (image / 255.0 - self.mean) / self.std
45
+ input_blob = input_blob.transpose(2, 0, 1)
46
+ input_blob = input_blob[np.newaxis, :, :, :]
47
+ input_blob = input_blob.astype(np.float32)
48
+ return input_blob
49
 
50
  def infer(self, image):
51
  # Preprocess
tools/quantize/README.md CHANGED
@@ -1,6 +1,6 @@
1
- # Quantization with ONNXRUNTIME
2
 
3
- ONNXRUNTIME is used for quantization in the Zoo.
4
 
5
  Install dependencies before trying quantization:
6
  ```shell
@@ -35,4 +35,4 @@ models = dict(
35
  )
36
  # quantize the added models
37
  python quantize.py model1
38
- ```
 
1
+ # Quantization with ONNXRUNTIME and Neural Compressor
2
 
3
+ [ONNXRUNTIME](https://github.com/microsoft/onnxruntime) and [Neural Compressor](https://github.com/intel/neural-compressor) are used for quantization in the Zoo.
4
 
5
  Install dependencies before trying quantization:
6
  ```shell
 
35
  )
36
  # quantize the added models
37
  python quantize.py model1
38
+ ```
tools/quantize/inc_configs/mobilenet.yaml ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright (c) 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ version: 1.0
17
+
18
+ model: # mandatory. used to specify model specific information.
19
+ name: mobilenetv2
20
+ framework: onnxrt_qlinearops # mandatory. supported values are tensorflow, pytorch, pytorch_ipex, onnxrt_integer, onnxrt_qlinear or mxnet; allow new framework backend extension.
21
+
22
+ quantization: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
23
+ approach: post_training_static_quant # optional. default value is post_training_static_quant.
24
+ calibration:
25
+ dataloader:
26
+ batch_size: 1
27
+ dataset:
28
+ ImagenetRaw:
29
+ data_path: /path/to/imagenet/val
30
+ image_list: /path/to/imagenet/val.txt # download from http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz
31
+ transform:
32
+ Rescale: {}
33
+ Resize:
34
+ size: 256
35
+ CenterCrop:
36
+ size: 224
37
+ Normalize:
38
+ mean: [0.485, 0.456, 0.406]
39
+ std: [0.229, 0.224, 0.225]
40
+ Transpose:
41
+ perm: [2, 0, 1]
42
+ Cast:
43
+ dtype: float32
44
+ evaluation: # optional. required if user doesn't provide eval_func in lpot.Quantization.
45
+ accuracy: # optional. required if user doesn't provide eval_func in lpot.Quantization.
46
+ metric:
47
+ topk: 1 # built-in metrics are topk, map, f1, allow user to register new metric.
48
+ dataloader:
49
+ batch_size: 1
50
+ dataset:
51
+ ImagenetRaw:
52
+ data_path: /path/to/imagenet/val
53
+ image_list: /path/to/imagenet/val.txt # download from http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz
54
+ transform:
55
+ Rescale: {}
56
+ Resize:
57
+ size: 256
58
+ CenterCrop:
59
+ size: 224
60
+ Normalize:
61
+ mean: [0.485, 0.456, 0.406]
62
+ std: [0.229, 0.224, 0.225]
63
+ Transpose:
64
+ perm: [2, 0, 1]
65
+ Cast:
66
+ dtype: float32
67
+ performance: # optional. used to benchmark performance of passing model.
68
+ warmup: 10
69
+ iteration: 1000
70
+ configs:
71
+ cores_per_instance: 4
72
+ num_of_instance: 1
73
+ dataloader:
74
+ batch_size: 1
75
+ dataset:
76
+ ImagenetRaw:
77
+ data_path: /path/to/imagenet/val
78
+ image_list: /path/to/imagenet/val.txt # download from http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz
79
+ transform:
80
+ Rescale: {}
81
+ Resize:
82
+ size: 256
83
+ CenterCrop:
84
+ size: 224
85
+ Normalize:
86
+ mean: [0.485, 0.456, 0.406]
87
+ std: [0.229, 0.224, 0.225]
88
+ Transpose:
89
+ perm: [2, 0, 1]
90
+ Cast:
91
+ dtype: float32
92
+
93
+ tuning:
94
+ accuracy_criterion:
95
+ relative: 0.02 # optional. default value is relative, other value is absolute. this example allows relative accuracy loss: 1%.
96
+ exit_policy:
97
+ timeout: 0 # optional. tuning timeout (seconds). default value is 0 which means early stop. combine with max_trials field to decide when to exit.
98
+ random_seed: 9527 # optional. random seed for deterministic tuning.
tools/quantize/quantize.py CHANGED
@@ -10,6 +10,7 @@ import numpy as ny
10
  import cv2 as cv
11
 
12
  import onnx
 
13
  from onnx import version_converter
14
  import onnxruntime
15
  from onnxruntime.quantization import quantize_static, CalibrationDataReader, QuantType
@@ -31,15 +32,15 @@ class DataReader(CalibrationDataReader):
31
  blobs = []
32
  for image_name in os.listdir(image_dir):
33
  image_name_suffix = image_name.split('.')[-1].lower()
34
- if image_name_suffix == 'jpg' or image_name_suffix != 'jpeg':
35
  continue
36
  img = cv.imread(os.path.join(image_dir, image_name))
37
  img = self.transforms(img)
38
  blob = cv.dnn.blobFromImage(img)
39
  blobs.append(blob)
40
- return blobs[:100]
41
 
42
- class Quantize:
43
  def __init__(self, model_path, calibration_image_dir, transforms=Compose(), per_channel=False, act_type='int8', wt_type='int8'):
44
  self.type_dict = {"uint8" : QuantType.QUInt8, "int8" : QuantType.QInt8}
45
 
@@ -77,35 +78,51 @@ class Quantize:
77
  os.remove('{}-opt.onnx'.format(self.model_path[:-5]))
78
  print('\tQuantized model saved to {}'.format(output_name))
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
  models=dict(
82
- yunet=Quantize(model_path='../../models/face_detection_yunet/face_detection_yunet_2022mar.onnx',
83
  calibration_image_dir='../../benchmark/data/face_detection',
84
  transforms=Compose([Resize(size=(160, 120))])),
85
- sface=Quantize(model_path='../../models/face_recognition_sface/face_recognition_sface_2021dec.onnx',
86
  calibration_image_dir='../../benchmark/data/face_recognition',
87
  transforms=Compose([Resize(size=(112, 112))])),
88
- pphumenseg=Quantize(model_path='../../models/human_segmentation_pphumanseg/human_segmentation_pphumanseg_2021oct.onnx',
89
  calibration_image_dir='../../benchmark/data/human_segmentation',
90
  transforms=Compose([Resize(size=(192, 192))])),
91
- ppresnet50=Quantize(model_path='../../models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx',
92
  calibration_image_dir='../../benchmark/data/image_classification',
93
  transforms=Compose([Resize(size=(224, 224))])),
94
- mobilenetv1=Quantize(model_path='../../models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx',
95
- calibration_image_dir='../../benchmark/data/image_classification',
96
- transforms=Compose([Resize(size=(256, 256)), CenterCrop(size=(224, 224)), Normalize(mean=[103.94, 116.78, 123.68], std=[0.017, 0.017, 0.017])])),
97
- mobilenetv2=Quantize(model_path='../../models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx',
98
- calibration_image_dir='../../benchmark/data/image_classification',
99
- transforms=Compose([Resize(size=(256, 256)), CenterCrop(size=(224, 224)), Normalize(mean=[103.94, 116.78, 123.68], std=[0.017, 0.017, 0.017])])),
100
  # TBD: DaSiamRPN
101
- youtureid=Quantize(model_path='../../models/person_reid_youtureid/person_reid_youtu_2021nov.onnx',
102
  calibration_image_dir='../../benchmark/data/person_reid',
103
  transforms=Compose([Resize(size=(128, 256))])),
104
  # TBD: DB-EN & DB-CN
105
- crnn_en=Quantize(model_path='../../models/text_recognition_crnn/text_recognition_CRNN_EN_2021sep.onnx',
106
  calibration_image_dir='../../benchmark/data/text',
107
  transforms=Compose([Resize(size=(100, 32)), ColorConvert(ctype=cv.COLOR_BGR2GRAY)])),
108
- crnn_cn=Quantize(model_path='../../models/text_recognition_crnn/text_recognition_CRNN_CN_2021nov.onnx',
109
  calibration_image_dir='../../benchmark/data/text',
110
  transforms=Compose([Resize(size=(100, 32))]))
111
  )
 
10
  import cv2 as cv
11
 
12
  import onnx
13
+ from neural_compressor.experimental import Quantization, common as nc_Quantization, nc_common
14
  from onnx import version_converter
15
  import onnxruntime
16
  from onnxruntime.quantization import quantize_static, CalibrationDataReader, QuantType
 
32
  blobs = []
33
  for image_name in os.listdir(image_dir):
34
  image_name_suffix = image_name.split('.')[-1].lower()
35
+ if image_name_suffix != 'jpg' and image_name_suffix != 'jpeg':
36
  continue
37
  img = cv.imread(os.path.join(image_dir, image_name))
38
  img = self.transforms(img)
39
  blob = cv.dnn.blobFromImage(img)
40
  blobs.append(blob)
41
+ return blobs
42
 
43
+ class ORT_Quantize:
44
  def __init__(self, model_path, calibration_image_dir, transforms=Compose(), per_channel=False, act_type='int8', wt_type='int8'):
45
  self.type_dict = {"uint8" : QuantType.QUInt8, "int8" : QuantType.QInt8}
46
 
 
78
  os.remove('{}-opt.onnx'.format(self.model_path[:-5]))
79
  print('\tQuantized model saved to {}'.format(output_name))
80
 
81
+ class INC_Quantize:
82
+ def __init__(self, model_path, config_path):
83
+ self.model_path = model_path
84
+ self.config_path = config_path
85
+
86
+ def run(self):
87
+ print('Quantizing (int8) with Intel\'s Neural Compressor:')
88
+ print('\tModel: {}'.format(self.model_path))
89
+ print('\tConfig: {}'.format(self.config_path))
90
+
91
+ output_name = '{}-int8-quantized.onnx'.format(self.model_path[:-5])
92
+
93
+ model = onnx.load(self.model_path)
94
+ quantizer = nc_Quantization(self.config_path)
95
+ quantizer.model = common.Model(model)
96
+ q_model = quantizer()
97
+ q_model.save(output_name)
98
+
99
 
100
  models=dict(
101
+ yunet=ORT_Quantize(model_path='../../models/face_detection_yunet/face_detection_yunet_2022mar.onnx',
102
  calibration_image_dir='../../benchmark/data/face_detection',
103
  transforms=Compose([Resize(size=(160, 120))])),
104
+ sface=ORT_Quantize(model_path='../../models/face_recognition_sface/face_recognition_sface_2021dec.onnx',
105
  calibration_image_dir='../../benchmark/data/face_recognition',
106
  transforms=Compose([Resize(size=(112, 112))])),
107
+ pphumenseg=ORT_Quantize(model_path='../../models/human_segmentation_pphumanseg/human_segmentation_pphumanseg_2021oct.onnx',
108
  calibration_image_dir='../../benchmark/data/human_segmentation',
109
  transforms=Compose([Resize(size=(192, 192))])),
110
+ ppresnet50=ORT_Quantize(model_path='../../models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx',
111
  calibration_image_dir='../../benchmark/data/image_classification',
112
  transforms=Compose([Resize(size=(224, 224))])),
113
+ mobilenetv1=INC_Quantize(model_path='../../models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx',
114
+ config_path='./inc_configs/mobilenet.yaml'),
115
+ mobilenetv2=INC_Quantize(model_path='../../models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx',
116
+ config_path='./inc_configs/mobilenet.yaml'),
 
 
117
  # TBD: DaSiamRPN
118
+ youtureid=ORT_Quantize(model_path='../../models/person_reid_youtureid/person_reid_youtu_2021nov.onnx',
119
  calibration_image_dir='../../benchmark/data/person_reid',
120
  transforms=Compose([Resize(size=(128, 256))])),
121
  # TBD: DB-EN & DB-CN
122
+ crnn_en=ORT_Quantize(model_path='../../models/text_recognition_crnn/text_recognition_CRNN_EN_2021sep.onnx',
123
  calibration_image_dir='../../benchmark/data/text',
124
  transforms=Compose([Resize(size=(100, 32)), ColorConvert(ctype=cv.COLOR_BGR2GRAY)])),
125
+ crnn_cn=ORT_Quantize(model_path='../../models/text_recognition_crnn/text_recognition_CRNN_CN_2021nov.onnx',
126
  calibration_image_dir='../../benchmark/data/text',
127
  transforms=Compose([Resize(size=(100, 32))]))
128
  )
tools/quantize/requirements.txt CHANGED
@@ -1,3 +1,5 @@
1
  opencv-python>=4.5.4.58
2
  onnx
3
- onnxruntime
 
 
 
1
  opencv-python>=4.5.4.58
2
  onnx
3
+ onnxruntime
4
+ neural-compressor
5
+