fix model quantization to support timvx backend (#209)
Browse files* fix model quantization to support timvx backend
* update table
- benchmark/README.md +2 -0
- benchmark/color_table.svg +4 -4
- tools/quantize/quantize-ort.py +11 -5
benchmark/README.md
CHANGED
@@ -350,6 +350,7 @@ Benchmarking ...
|
|
350 |
backend=cv.dnn.DNN_BACKEND_TIMVX
|
351 |
target=cv.dnn.DNN_TARGET_NPU
|
352 |
mean median min input size model
|
|
|
353 |
45.83 47.06 43.04 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
|
354 |
29.20 27.55 26.25 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
|
355 |
18.47 18.16 17.96 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
|
@@ -357,6 +358,7 @@ mean median min input size model
|
|
357 |
149.05 155.10 144.42 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
|
358 |
147.40 147.49 135.90 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
|
359 |
75.91 79.27 71.98 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
|
|
|
360 |
117.71 119.69 107.37 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
361 |
379.46 366.19 360.02 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
362 |
33.90 36.32 31.71 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
|
|
350 |
backend=cv.dnn.DNN_BACKEND_TIMVX
|
351 |
target=cv.dnn.DNN_TARGET_NPU
|
352 |
mean median min input size model
|
353 |
+
5.08 4.72 4.70 [160, 120] YuNet with ['face_detection_yunet_2023mar_int8.onnx']
|
354 |
45.83 47.06 43.04 [150, 150] SFace with ['face_recognition_sface_2021dec_int8.onnx']
|
355 |
29.20 27.55 26.25 [112, 112] FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
|
356 |
18.47 18.16 17.96 [224, 224] MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
|
|
|
358 |
149.05 155.10 144.42 [224, 224] MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
|
359 |
147.40 147.49 135.90 [224, 224] MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
|
360 |
75.91 79.27 71.98 [224, 224] PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
|
361 |
+
30.98 30.56 29.36 [320, 240] LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
|
362 |
117.71 119.69 107.37 [416, 416] NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
|
363 |
379.46 366.19 360.02 [640, 640] YoloX with ['object_detection_yolox_2022nov_int8.onnx']
|
364 |
33.90 36.32 31.71 [192, 192] MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
|
benchmark/color_table.svg
CHANGED
|
|
tools/quantize/quantize-ort.py
CHANGED
@@ -46,7 +46,7 @@ class DataReader(CalibrationDataReader):
|
|
46 |
return blobs
|
47 |
|
48 |
class Quantize:
|
49 |
-
def __init__(self, model_path, calibration_image_dir, transforms=Compose(), per_channel=False, act_type='int8', wt_type='int8', data_dim='chw'):
|
50 |
self.type_dict = {"uint8" : QuantType.QUInt8, "int8" : QuantType.QInt8}
|
51 |
|
52 |
self.model_path = model_path
|
@@ -55,6 +55,7 @@ class Quantize:
|
|
55 |
self.per_channel = per_channel
|
56 |
self.act_type = act_type
|
57 |
self.wt_type = wt_type
|
|
|
58 |
|
59 |
# data reader
|
60 |
self.dr = DataReader(self.model_path, self.calibration_image_dir, self.transforms, data_dim)
|
@@ -80,15 +81,18 @@ class Quantize:
|
|
80 |
quant_format=QuantFormat.QOperator, # start from onnxruntime==1.11.0, quant_format is set to QuantFormat.QDQ by default, which performs fake quantization
|
81 |
per_channel=self.per_channel,
|
82 |
weight_type=self.type_dict[self.wt_type],
|
83 |
-
activation_type=self.type_dict[self.act_type]
|
|
|
84 |
if new_model_path != self.model_path:
|
85 |
os.remove(new_model_path)
|
86 |
print('\tQuantized model saved to {}'.format(output_name))
|
87 |
|
88 |
models=dict(
|
89 |
-
yunet=Quantize(model_path='../../models/face_detection_yunet/
|
90 |
calibration_image_dir='../../benchmark/data/face_detection',
|
91 |
-
transforms=Compose([Resize(size=(160, 120))])
|
|
|
|
|
92 |
sface=Quantize(model_path='../../models/face_recognition_sface/face_recognition_sface_2021dec.onnx',
|
93 |
calibration_image_dir='../../benchmark/data/face_recognition',
|
94 |
transforms=Compose([Resize(size=(112, 112))])),
|
@@ -119,7 +123,9 @@ models=dict(
|
|
119 |
ColorConvert(ctype=cv.COLOR_BGR2RGB)]), data_dim='hwc'),
|
120 |
lpd_yunet=Quantize(model_path='../../models/license_plate_detection_yunet/license_plate_detection_lpd_yunet_2023mar.onnx',
|
121 |
calibration_image_dir='../../benchmark/data/license_plate_detection',
|
122 |
-
transforms=Compose([Resize(size=(320, 240))])
|
|
|
|
|
123 |
)
|
124 |
|
125 |
if __name__ == '__main__':
|
|
|
46 |
return blobs
|
47 |
|
48 |
class Quantize:
|
49 |
+
def __init__(self, model_path, calibration_image_dir, transforms=Compose(), per_channel=False, act_type='int8', wt_type='int8', data_dim='chw', nodes_to_exclude=[]):
|
50 |
self.type_dict = {"uint8" : QuantType.QUInt8, "int8" : QuantType.QInt8}
|
51 |
|
52 |
self.model_path = model_path
|
|
|
55 |
self.per_channel = per_channel
|
56 |
self.act_type = act_type
|
57 |
self.wt_type = wt_type
|
58 |
+
self.nodes_to_exclude = nodes_to_exclude
|
59 |
|
60 |
# data reader
|
61 |
self.dr = DataReader(self.model_path, self.calibration_image_dir, self.transforms, data_dim)
|
|
|
81 |
quant_format=QuantFormat.QOperator, # start from onnxruntime==1.11.0, quant_format is set to QuantFormat.QDQ by default, which performs fake quantization
|
82 |
per_channel=self.per_channel,
|
83 |
weight_type=self.type_dict[self.wt_type],
|
84 |
+
activation_type=self.type_dict[self.act_type],
|
85 |
+
nodes_to_exclude=self.nodes_to_exclude)
|
86 |
if new_model_path != self.model_path:
|
87 |
os.remove(new_model_path)
|
88 |
print('\tQuantized model saved to {}'.format(output_name))
|
89 |
|
90 |
models=dict(
|
91 |
+
yunet=Quantize(model_path='../../models/face_detection_yunet/face_detection_yunet_2023mar.onnx',
|
92 |
calibration_image_dir='../../benchmark/data/face_detection',
|
93 |
+
transforms=Compose([Resize(size=(160, 120))]),
|
94 |
+
nodes_to_exclude=['MaxPool_5', 'MaxPool_18', 'MaxPool_25', 'MaxPool_32'],
|
95 |
+
),
|
96 |
sface=Quantize(model_path='../../models/face_recognition_sface/face_recognition_sface_2021dec.onnx',
|
97 |
calibration_image_dir='../../benchmark/data/face_recognition',
|
98 |
transforms=Compose([Resize(size=(112, 112))])),
|
|
|
123 |
ColorConvert(ctype=cv.COLOR_BGR2RGB)]), data_dim='hwc'),
|
124 |
lpd_yunet=Quantize(model_path='../../models/license_plate_detection_yunet/license_plate_detection_lpd_yunet_2023mar.onnx',
|
125 |
calibration_image_dir='../../benchmark/data/license_plate_detection',
|
126 |
+
transforms=Compose([Resize(size=(320, 240))]),
|
127 |
+
nodes_to_exclude=['MaxPool_5', 'MaxPool_18', 'MaxPool_25', 'MaxPool_32', 'MaxPool_39'],
|
128 |
+
),
|
129 |
)
|
130 |
|
131 |
if __name__ == '__main__':
|