C++ Demo - Facial Expression Recognition (#233)
Browse files* cpp demo for facial expression recognition
* minor pr fix
* add empty line
* specified cxx version in the cmake list
models/facial_expression_recognition/CMakeLists.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cmake_minimum_required(VERSION 3.24)
|
2 |
+
set(CMAKE_CXX_STANDARD 11)
|
3 |
+
set(project_name "opencv_zoo_face_expression_recognition")
|
4 |
+
|
5 |
+
PROJECT (${project_name})
|
6 |
+
|
7 |
+
set(OPENCV_VERSION "4.9.0")
|
8 |
+
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
|
9 |
+
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
|
10 |
+
# Find OpenCV, you may need to set OpenCV_DIR variable
|
11 |
+
# to the absolute path to the directory containing OpenCVConfig.cmake file
|
12 |
+
# via the command line or GUI
|
13 |
+
|
14 |
+
file(GLOB SourceFile
|
15 |
+
"demo.cpp")
|
16 |
+
# If the package has been found, several variables will
|
17 |
+
# be set, you can find the full list with descriptions
|
18 |
+
# in the OpenCVConfig.cmake file.
|
19 |
+
# Print some message showing some of them
|
20 |
+
message(STATUS "OpenCV library status:")
|
21 |
+
message(STATUS " config: ${OpenCV_DIR}")
|
22 |
+
message(STATUS " version: ${OpenCV_VERSION}")
|
23 |
+
message(STATUS " libraries: ${OpenCV_LIBS}")
|
24 |
+
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
|
25 |
+
|
26 |
+
# Declare the executable target built from your sources
|
27 |
+
add_executable(${project_name} ${SourceFile})
|
28 |
+
|
29 |
+
# Link your application with OpenCV libraries
|
30 |
+
target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS})
|
models/facial_expression_recognition/README.md
CHANGED
@@ -19,12 +19,30 @@ Results of accuracy evaluation on [RAF-DB](http://whdeng.cn/RAF/model1.html).
|
|
19 |
|
20 |
***NOTE***: This demo uses [../face_detection_yunet](../face_detection_yunet) as face detector, which supports 5-landmark detection for now (2021sep).
|
21 |
|
|
|
22 |
Run the following command to try the demo:
|
23 |
```shell
|
24 |
# recognize the facial expression on images
|
25 |
python demo.py --input /path/to/image -v
|
26 |
```
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
### Example outputs
|
29 |
|
30 |
Note: Zoom in to to see the recognized facial expression in the top-left corner of each face boxes.
|
|
|
19 |
|
20 |
***NOTE***: This demo uses [../face_detection_yunet](../face_detection_yunet) as face detector, which supports 5-landmark detection for now (2021sep).
|
21 |
|
22 |
+
### Python
|
23 |
Run the following command to try the demo:
|
24 |
```shell
|
25 |
# recognize the facial expression on images
|
26 |
python demo.py --input /path/to/image -v
|
27 |
```
|
28 |
|
29 |
+
### C++
|
30 |
+
|
31 |
+
Install latest OpenCV and CMake >= 3.24.0 to get started with:
|
32 |
+
|
33 |
+
```shell
|
34 |
+
# A typical and default installation path of OpenCV is /usr/local
|
35 |
+
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
|
36 |
+
cmake --build build
|
37 |
+
|
38 |
+
# detect on camera input
|
39 |
+
./build/opencv_zoo_face_expression_recognition
|
40 |
+
# detect on an image
|
41 |
+
./build/opencv_zoo_face_expression_recognition -i=/path/to/image
|
42 |
+
# get help messages
|
43 |
+
./build/opencv_zoo_face_expression_recognition -h
|
44 |
+
```
|
45 |
+
|
46 |
### Example outputs
|
47 |
|
48 |
Note: Zoom in to to see the recognized facial expression in the top-left corner of each face boxes.
|
models/facial_expression_recognition/demo.cpp
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "opencv2/opencv.hpp"
|
2 |
+
|
3 |
+
#include <map>
|
4 |
+
#include <vector>
|
5 |
+
#include <string>
|
6 |
+
#include <iostream>
|
7 |
+
|
8 |
+
using namespace std;
|
9 |
+
using namespace cv;
|
10 |
+
using namespace dnn;
|
11 |
+
|
12 |
+
std::vector<std::pair<int, int>> backend_target_pairs = {
|
13 |
+
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU},
|
14 |
+
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA},
|
15 |
+
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16},
|
16 |
+
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU},
|
17 |
+
{DNN_BACKEND_CANN, DNN_TARGET_NPU}
|
18 |
+
};
|
19 |
+
|
20 |
+
class FER
|
21 |
+
{
|
22 |
+
private:
|
23 |
+
Net model;
|
24 |
+
string modelPath;
|
25 |
+
float std[5][2] = {
|
26 |
+
{38.2946, 51.6963},
|
27 |
+
{73.5318, 51.5014},
|
28 |
+
{56.0252, 71.7366},
|
29 |
+
{41.5493, 92.3655},
|
30 |
+
{70.7299, 92.2041}
|
31 |
+
};
|
32 |
+
vector<String> expressionEnum = {
|
33 |
+
"angry", "disgust", "fearful",
|
34 |
+
"happy", "neutral", "sad", "surprised"
|
35 |
+
};
|
36 |
+
Mat stdPoints = Mat(5, 2, CV_32F, this->std);
|
37 |
+
Size patchSize = Size(112,112);
|
38 |
+
Scalar imageMean = Scalar(0.5,0.5,0.5);
|
39 |
+
Scalar imageStd = Scalar(0.5,0.5,0.5);
|
40 |
+
|
41 |
+
const String inputNames = "data";
|
42 |
+
const String outputNames = "label";
|
43 |
+
|
44 |
+
int backend_id;
|
45 |
+
int target_id;
|
46 |
+
|
47 |
+
public:
|
48 |
+
FER(const string& modelPath,
|
49 |
+
int backend_id = 0,
|
50 |
+
int target_id = 0)
|
51 |
+
: modelPath(modelPath), backend_id(backend_id), target_id(target_id)
|
52 |
+
{
|
53 |
+
this->model = readNet(modelPath);
|
54 |
+
this->model.setPreferableBackend(backend_id);
|
55 |
+
this->model.setPreferableTarget(target_id);
|
56 |
+
}
|
57 |
+
|
58 |
+
Mat preprocess(const Mat image, const Mat points)
|
59 |
+
{
|
60 |
+
// image alignment
|
61 |
+
Mat transformation = estimateAffine2D(points, this->stdPoints);
|
62 |
+
Mat aligned = Mat::zeros(this->patchSize.height, this->patchSize.width, image.type());
|
63 |
+
warpAffine(image, aligned, transformation, this->patchSize);
|
64 |
+
|
65 |
+
// image normalization
|
66 |
+
aligned.convertTo(aligned, CV_32F, 1.0 / 255.0);
|
67 |
+
aligned -= imageMean;
|
68 |
+
aligned /= imageStd;
|
69 |
+
|
70 |
+
return blobFromImage(aligned);;
|
71 |
+
}
|
72 |
+
|
73 |
+
String infer(const Mat image, const Mat facePoints)
|
74 |
+
{
|
75 |
+
Mat points = facePoints(Rect(4, 0, facePoints.cols-5, facePoints.rows)).reshape(2, 5);
|
76 |
+
Mat inputBlob = preprocess(image, points);
|
77 |
+
|
78 |
+
this->model.setInput(inputBlob, this->inputNames);
|
79 |
+
Mat outputBlob = this->model.forward(this->outputNames);
|
80 |
+
|
81 |
+
Point maxLoc;
|
82 |
+
minMaxLoc(outputBlob, nullptr, nullptr, nullptr, &maxLoc);
|
83 |
+
|
84 |
+
return getDesc(maxLoc.x);
|
85 |
+
}
|
86 |
+
|
87 |
+
String getDesc(int ind)
|
88 |
+
{
|
89 |
+
|
90 |
+
if (ind >= 0 && ind < this->expressionEnum.size())
|
91 |
+
{
|
92 |
+
return this->expressionEnum[ind];
|
93 |
+
}
|
94 |
+
else
|
95 |
+
{
|
96 |
+
cerr << "Error: Index out of bounds." << endl;
|
97 |
+
return "";
|
98 |
+
}
|
99 |
+
}
|
100 |
+
|
101 |
+
};
|
102 |
+
|
103 |
+
class YuNet
|
104 |
+
{
|
105 |
+
public:
|
106 |
+
YuNet(const string& model_path,
|
107 |
+
const Size& input_size = Size(320, 320),
|
108 |
+
float conf_threshold = 0.6f,
|
109 |
+
float nms_threshold = 0.3f,
|
110 |
+
int top_k = 5000,
|
111 |
+
int backend_id = 0,
|
112 |
+
int target_id = 0)
|
113 |
+
: model_path_(model_path), input_size_(input_size),
|
114 |
+
conf_threshold_(conf_threshold), nms_threshold_(nms_threshold),
|
115 |
+
top_k_(top_k), backend_id_(backend_id), target_id_(target_id)
|
116 |
+
{
|
117 |
+
model = FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_);
|
118 |
+
}
|
119 |
+
|
120 |
+
void setBackendAndTarget(int backend_id, int target_id)
|
121 |
+
{
|
122 |
+
backend_id_ = backend_id;
|
123 |
+
target_id_ = target_id;
|
124 |
+
model = FaceDetectorYN::create(model_path_, "", input_size_, conf_threshold_, nms_threshold_, top_k_, backend_id_, target_id_);
|
125 |
+
}
|
126 |
+
|
127 |
+
/* Overwrite the input size when creating the model. Size format: [Width, Height].
|
128 |
+
*/
|
129 |
+
void setInputSize(const Size& input_size)
|
130 |
+
{
|
131 |
+
input_size_ = input_size;
|
132 |
+
model->setInputSize(input_size_);
|
133 |
+
}
|
134 |
+
|
135 |
+
Mat infer(const Mat image)
|
136 |
+
{
|
137 |
+
Mat res;
|
138 |
+
model->detect(image, res);
|
139 |
+
return res;
|
140 |
+
}
|
141 |
+
|
142 |
+
private:
|
143 |
+
Ptr<FaceDetectorYN> model;
|
144 |
+
|
145 |
+
string model_path_;
|
146 |
+
Size input_size_;
|
147 |
+
float conf_threshold_;
|
148 |
+
float nms_threshold_;
|
149 |
+
int top_k_;
|
150 |
+
int backend_id_;
|
151 |
+
int target_id_;
|
152 |
+
};
|
153 |
+
|
154 |
+
cv::Mat visualize(const cv::Mat& image, const cv::Mat& faces, const vector<String> expressions, float fps = -1.f)
|
155 |
+
{
|
156 |
+
static cv::Scalar box_color{0, 255, 0};
|
157 |
+
static std::vector<cv::Scalar> landmark_color{
|
158 |
+
cv::Scalar(255, 0, 0), // right eye
|
159 |
+
cv::Scalar( 0, 0, 255), // left eye
|
160 |
+
cv::Scalar( 0, 255, 0), // nose tip
|
161 |
+
cv::Scalar(255, 0, 255), // right mouth corner
|
162 |
+
cv::Scalar( 0, 255, 255) // left mouth corner
|
163 |
+
};
|
164 |
+
static cv::Scalar text_color{0, 255, 0};
|
165 |
+
|
166 |
+
auto output_image = image.clone();
|
167 |
+
|
168 |
+
if (fps >= 0)
|
169 |
+
{
|
170 |
+
cv::putText(output_image, cv::format("FPS: %.2f", fps), cv::Point(0, 15), cv::FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2);
|
171 |
+
}
|
172 |
+
|
173 |
+
for (int i = 0; i < faces.rows; ++i)
|
174 |
+
{
|
175 |
+
// Draw bounding boxes
|
176 |
+
int x1 = static_cast<int>(faces.at<float>(i, 0));
|
177 |
+
int y1 = static_cast<int>(faces.at<float>(i, 1));
|
178 |
+
int w = static_cast<int>(faces.at<float>(i, 2));
|
179 |
+
int h = static_cast<int>(faces.at<float>(i, 3));
|
180 |
+
cv::rectangle(output_image, cv::Rect(x1, y1, w, h), box_color, 2);
|
181 |
+
|
182 |
+
// Expression as text
|
183 |
+
String exp = expressions[i];
|
184 |
+
cv::putText(output_image, exp, cv::Point(x1, y1+12), cv::FONT_HERSHEY_DUPLEX, 0.5, text_color);
|
185 |
+
|
186 |
+
// Draw landmarks
|
187 |
+
for (int j = 0; j < landmark_color.size(); ++j)
|
188 |
+
{
|
189 |
+
int x = static_cast<int>(faces.at<float>(i, 2*j+4)), y = static_cast<int>(faces.at<float>(i, 2*j+5));
|
190 |
+
cv::circle(output_image, cv::Point(x, y), 2, landmark_color[j], 2);
|
191 |
+
}
|
192 |
+
}
|
193 |
+
return output_image;
|
194 |
+
}
|
195 |
+
|
196 |
+
string keys =
|
197 |
+
"{ help h | | Print help message. }"
|
198 |
+
"{ model m | facial_expression_recognition_mobilefacenet_2022july.onnx | Usage: Path to the model, defaults to facial_expression_recognition_mobilefacenet_2022july.onnx }"
|
199 |
+
"{ yunet_model ym | ../face_detection_yunet/face_detection_yunet_2023mar.onnx | Usage: Path to the face detection yunet model, defaults to face_detection_yunet_2023mar.onnx }"
|
200 |
+
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
201 |
+
"{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n"
|
202 |
+
"0: (default) OpenCV implementation + CPU,\n"
|
203 |
+
"1: CUDA + GPU (CUDA),\n"
|
204 |
+
"2: CUDA + GPU (CUDA FP16),\n"
|
205 |
+
"3: TIM-VX + NPU,\n"
|
206 |
+
"4: CANN + NPU}"
|
207 |
+
"{ save s | false | Specify to save results.}"
|
208 |
+
"{ vis v | true | Specify to open a window for result visualization.}"
|
209 |
+
;
|
210 |
+
|
211 |
+
|
212 |
+
int main(int argc, char** argv)
|
213 |
+
{
|
214 |
+
CommandLineParser parser(argc, argv, keys);
|
215 |
+
|
216 |
+
parser.about("Facial Expression Recognition");
|
217 |
+
if (parser.has("help"))
|
218 |
+
{
|
219 |
+
parser.printMessage();
|
220 |
+
return 0;
|
221 |
+
}
|
222 |
+
|
223 |
+
string modelPath = parser.get<string>("model");
|
224 |
+
string yunetModelPath = parser.get<string>("yunet_model");
|
225 |
+
string inputPath = parser.get<string>("input");
|
226 |
+
uint8_t backendTarget = parser.get<uint8_t>("backend_target");
|
227 |
+
bool saveFlag = parser.get<bool>("save");
|
228 |
+
bool visFlag = parser.get<bool>("vis");
|
229 |
+
|
230 |
+
if (modelPath.empty())
|
231 |
+
CV_Error(Error::StsError, "Model file " + modelPath + " not found");
|
232 |
+
|
233 |
+
if (yunetModelPath.empty())
|
234 |
+
CV_Error(Error::StsError, "Face Detection Model file " + yunetModelPath + " not found");
|
235 |
+
|
236 |
+
YuNet faceDetectionModel(yunetModelPath);
|
237 |
+
FER expressionRecognitionModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second);
|
238 |
+
|
239 |
+
VideoCapture cap;
|
240 |
+
if (!inputPath.empty())
|
241 |
+
cap.open(samples::findFile(inputPath));
|
242 |
+
else
|
243 |
+
cap.open(0);
|
244 |
+
|
245 |
+
if (!cap.isOpened())
|
246 |
+
CV_Error(Error::StsError, "Cannot opend video or file");
|
247 |
+
|
248 |
+
Mat frame;
|
249 |
+
static const std::string kWinName = "Facial Expression Demo";
|
250 |
+
|
251 |
+
|
252 |
+
while (waitKey(1) < 0)
|
253 |
+
{
|
254 |
+
cap >> frame;
|
255 |
+
|
256 |
+
if (frame.empty())
|
257 |
+
{
|
258 |
+
if(inputPath.empty())
|
259 |
+
cout << "Frame is empty" << endl;
|
260 |
+
break;
|
261 |
+
}
|
262 |
+
|
263 |
+
faceDetectionModel.setInputSize(frame.size());
|
264 |
+
|
265 |
+
Mat faces = faceDetectionModel.infer(frame);
|
266 |
+
vector<String> expressions;
|
267 |
+
|
268 |
+
for (int i = 0; i < faces.rows; ++i)
|
269 |
+
{
|
270 |
+
Mat face = faces.row(i);
|
271 |
+
String exp = expressionRecognitionModel.infer(frame, face);
|
272 |
+
expressions.push_back(exp);
|
273 |
+
|
274 |
+
int x1 = static_cast<int>(faces.at<float>(i, 0));
|
275 |
+
int y1 = static_cast<int>(faces.at<float>(i, 1));
|
276 |
+
int w = static_cast<int>(faces.at<float>(i, 2));
|
277 |
+
int h = static_cast<int>(faces.at<float>(i, 3));
|
278 |
+
float conf = faces.at<float>(i, 14);
|
279 |
+
|
280 |
+
std::cout << cv::format("%d: x1=%d, y1=%d, w=%d, h=%d, conf=%.4f expression=%s\n", i, x1, y1, w, h, conf, exp.c_str());
|
281 |
+
|
282 |
+
}
|
283 |
+
|
284 |
+
Mat res_frame = visualize(frame, faces, expressions);
|
285 |
+
|
286 |
+
if(visFlag || inputPath.empty())
|
287 |
+
{
|
288 |
+
imshow(kWinName, res_frame);
|
289 |
+
if(!inputPath.empty())
|
290 |
+
waitKey(0);
|
291 |
+
}
|
292 |
+
if(saveFlag)
|
293 |
+
{
|
294 |
+
cout << "Results are saved to result.jpg" << endl;
|
295 |
+
|
296 |
+
cv::imwrite("result.jpg", res_frame);
|
297 |
+
}
|
298 |
+
}
|
299 |
+
|
300 |
+
|
301 |
+
return 0;
|
302 |
+
|
303 |
+
}
|
304 |
+
|