C++ Demo - Human Segmentation (#243)
Browse files* add human segmentation c++ demo
* removed debug print and update README
* inverted colors for consistency
* adjusted blending weight for visualization
models/human_segmentation_pphumanseg/CMakeLists.txt
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cmake_minimum_required(VERSION 3.24)
|
2 |
+
set(CMAKE_CXX_STANDARD 11)
|
3 |
+
set(project_name "opencv_zoo_human_segmentation")
|
4 |
+
|
5 |
+
PROJECT (${project_name})
|
6 |
+
|
7 |
+
set(OPENCV_VERSION "4.9.0")
|
8 |
+
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
|
9 |
+
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
|
10 |
+
# Find OpenCV, you may need to set OpenCV_DIR variable
|
11 |
+
# to the absolute path to the directory containing OpenCVConfig.cmake file
|
12 |
+
# via the command line or GUI
|
13 |
+
|
14 |
+
file(GLOB SourceFile
|
15 |
+
"demo.cpp")
|
16 |
+
# If the package has been found, several variables will
|
17 |
+
# be set, you can find the full list with descriptions
|
18 |
+
# in the OpenCVConfig.cmake file.
|
19 |
+
# Print some message showing some of them
|
20 |
+
message(STATUS "OpenCV library status:")
|
21 |
+
message(STATUS " config: ${OpenCV_DIR}")
|
22 |
+
message(STATUS " version: ${OpenCV_VERSION}")
|
23 |
+
message(STATUS " libraries: ${OpenCV_LIBS}")
|
24 |
+
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
|
25 |
+
|
26 |
+
# Declare the executable target built from your sources
|
27 |
+
add_executable(${project_name} ${SourceFile})
|
28 |
+
|
29 |
+
# Link your application with OpenCV libraries
|
30 |
+
target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS})
|
31 |
+
|
models/human_segmentation_pphumanseg/README.md
CHANGED
@@ -4,6 +4,8 @@ This model is ported from [PaddleHub](https://github.com/PaddlePaddle/PaddleHub)
|
|
4 |
|
5 |
## Demo
|
6 |
|
|
|
|
|
7 |
Run the following command to try the demo:
|
8 |
|
9 |
```shell
|
@@ -16,6 +18,23 @@ python demo.py --input /path/to/image -v
|
|
16 |
python demo.py --help
|
17 |
```
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
### Example outputs
|
20 |
|
21 |

|
|
|
4 |
|
5 |
## Demo
|
6 |
|
7 |
+
### Python
|
8 |
+
|
9 |
Run the following command to try the demo:
|
10 |
|
11 |
```shell
|
|
|
18 |
python demo.py --help
|
19 |
```
|
20 |
|
21 |
+
### C++
|
22 |
+
|
23 |
+
Install latest OpenCV and CMake >= 3.24.0 to get started with:
|
24 |
+
|
25 |
+
```shell
|
26 |
+
# A typical and default installation path of OpenCV is /usr/local
|
27 |
+
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
|
28 |
+
cmake --build build
|
29 |
+
|
30 |
+
# detect on camera input
|
31 |
+
./build/opencv_zoo_human_segmentation
|
32 |
+
# detect on an image
|
33 |
+
./build/opencv_zoo_human_segmentation -i=/path/to/image
|
34 |
+
# get help messages
|
35 |
+
./build/opencv_zoo_human_segmentation -h
|
36 |
+
```
|
37 |
+
|
38 |
### Example outputs
|
39 |
|
40 |

|
models/human_segmentation_pphumanseg/demo.cpp
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "opencv2/opencv.hpp"
|
2 |
+
|
3 |
+
#include <map>
|
4 |
+
#include <vector>
|
5 |
+
#include <string>
|
6 |
+
#include <iostream>
|
7 |
+
|
8 |
+
using namespace std;
|
9 |
+
using namespace cv;
|
10 |
+
using namespace dnn;
|
11 |
+
|
12 |
+
std::vector<std::pair<int, int>> backend_target_pairs = {
|
13 |
+
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU},
|
14 |
+
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA},
|
15 |
+
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16},
|
16 |
+
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU},
|
17 |
+
{DNN_BACKEND_CANN, DNN_TARGET_NPU}
|
18 |
+
};
|
19 |
+
|
20 |
+
class PPHS
|
21 |
+
{
|
22 |
+
private:
|
23 |
+
Net model;
|
24 |
+
string modelPath;
|
25 |
+
|
26 |
+
Scalar imageMean = Scalar(0.5,0.5,0.5);
|
27 |
+
Scalar imageStd = Scalar(0.5,0.5,0.5);
|
28 |
+
Size modelInputSize = Size(192, 192);
|
29 |
+
Size currentSize;
|
30 |
+
|
31 |
+
const String inputNames = "x";
|
32 |
+
const String outputNames = "save_infer_model/scale_0.tmp_1";
|
33 |
+
|
34 |
+
int backend_id;
|
35 |
+
int target_id;
|
36 |
+
|
37 |
+
public:
|
38 |
+
PPHS(const string& modelPath,
|
39 |
+
int backend_id = 0,
|
40 |
+
int target_id = 0)
|
41 |
+
: modelPath(modelPath), backend_id(backend_id), target_id(target_id)
|
42 |
+
{
|
43 |
+
this->model = readNet(modelPath);
|
44 |
+
this->model.setPreferableBackend(backend_id);
|
45 |
+
this->model.setPreferableTarget(target_id);
|
46 |
+
}
|
47 |
+
|
48 |
+
Mat preprocess(const Mat image)
|
49 |
+
{
|
50 |
+
this->currentSize = image.size();
|
51 |
+
Mat preprocessed = Mat::zeros(this->modelInputSize, image.type());
|
52 |
+
resize(image, preprocessed, this->modelInputSize);
|
53 |
+
|
54 |
+
// image normalization
|
55 |
+
preprocessed.convertTo(preprocessed, CV_32F, 1.0 / 255.0);
|
56 |
+
preprocessed -= imageMean;
|
57 |
+
preprocessed /= imageStd;
|
58 |
+
|
59 |
+
return blobFromImage(preprocessed);;
|
60 |
+
}
|
61 |
+
|
62 |
+
Mat infer(const Mat image)
|
63 |
+
{
|
64 |
+
Mat inputBlob = preprocess(image);
|
65 |
+
|
66 |
+
this->model.setInput(inputBlob, this->inputNames);
|
67 |
+
Mat outputBlob = this->model.forward(this->outputNames);
|
68 |
+
|
69 |
+
return postprocess(outputBlob);
|
70 |
+
}
|
71 |
+
|
72 |
+
Mat postprocess(Mat image)
|
73 |
+
{
|
74 |
+
reduceArgMax(image,image,1);
|
75 |
+
image = image.reshape(1,image.size[2]);
|
76 |
+
image.convertTo(image, CV_32F);
|
77 |
+
resize(image, image, this->currentSize, 0, 0, INTER_LINEAR);
|
78 |
+
image.convertTo(image, CV_8U);
|
79 |
+
|
80 |
+
return image;
|
81 |
+
}
|
82 |
+
|
83 |
+
};
|
84 |
+
|
85 |
+
|
86 |
+
vector<uint8_t> getColorMapList(int num_classes) {
|
87 |
+
num_classes += 1;
|
88 |
+
|
89 |
+
vector<uint8_t> cm(num_classes*3, 0);
|
90 |
+
|
91 |
+
int lab, j;
|
92 |
+
|
93 |
+
for (int i = 0; i < num_classes; ++i) {
|
94 |
+
lab = i;
|
95 |
+
j = 0;
|
96 |
+
|
97 |
+
while(lab){
|
98 |
+
cm[i] |= (((lab >> 0) & 1) << (7 - j));
|
99 |
+
cm[i+num_classes] |= (((lab >> 1) & 1) << (7 - j));
|
100 |
+
cm[i+2*num_classes] |= (((lab >> 2) & 1) << (7 - j));
|
101 |
+
++j;
|
102 |
+
lab >>= 3;
|
103 |
+
}
|
104 |
+
|
105 |
+
}
|
106 |
+
|
107 |
+
cm.erase(cm.begin(), cm.begin()+3);
|
108 |
+
|
109 |
+
return cm;
|
110 |
+
};
|
111 |
+
|
112 |
+
Mat visualize(const Mat& image, const Mat& result, float fps = -1.f, float weight = 0.4)
|
113 |
+
{
|
114 |
+
const Scalar& text_color = Scalar(0, 255, 0);
|
115 |
+
Mat output_image = image.clone();
|
116 |
+
|
117 |
+
vector<uint8_t> color_map = getColorMapList(256);
|
118 |
+
|
119 |
+
Mat cmm(color_map);
|
120 |
+
|
121 |
+
cmm = cmm.reshape(1,{3,256});
|
122 |
+
|
123 |
+
if (fps >= 0)
|
124 |
+
{
|
125 |
+
putText(output_image, format("FPS: %.2f", fps), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2);
|
126 |
+
}
|
127 |
+
|
128 |
+
Mat c1, c2, c3;
|
129 |
+
|
130 |
+
LUT(result, cmm.row(0), c1);
|
131 |
+
LUT(result, cmm.row(1), c2);
|
132 |
+
LUT(result, cmm.row(2), c3);
|
133 |
+
|
134 |
+
Mat pseudo_img;
|
135 |
+
merge(std::vector<Mat>{c1,c2,c3}, pseudo_img);
|
136 |
+
|
137 |
+
addWeighted(output_image, weight, pseudo_img, 1 - weight, 0, output_image);
|
138 |
+
|
139 |
+
return output_image;
|
140 |
+
};
|
141 |
+
|
142 |
+
string keys =
|
143 |
+
"{ help h | | Print help message. }"
|
144 |
+
"{ model m | human_segmentation_pphumanseg_2023mar.onnx | Usage: Path to the model, defaults to human_segmentation_pphumanseg_2023mar.onnx }"
|
145 |
+
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
146 |
+
"{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n"
|
147 |
+
"0: (default) OpenCV implementation + CPU,\n"
|
148 |
+
"1: CUDA + GPU (CUDA),\n"
|
149 |
+
"2: CUDA + GPU (CUDA FP16),\n"
|
150 |
+
"3: TIM-VX + NPU,\n"
|
151 |
+
"4: CANN + NPU}"
|
152 |
+
"{ save s | false | Specify to save results.}"
|
153 |
+
"{ vis v | true | Specify to open a window for result visualization.}"
|
154 |
+
;
|
155 |
+
|
156 |
+
|
157 |
+
int main(int argc, char** argv)
|
158 |
+
{
|
159 |
+
CommandLineParser parser(argc, argv, keys);
|
160 |
+
|
161 |
+
parser.about("Human Segmentation");
|
162 |
+
if (parser.has("help"))
|
163 |
+
{
|
164 |
+
parser.printMessage();
|
165 |
+
return 0;
|
166 |
+
}
|
167 |
+
|
168 |
+
string modelPath = parser.get<string>("model");
|
169 |
+
string inputPath = parser.get<string>("input");
|
170 |
+
uint8_t backendTarget = parser.get<uint8_t>("backend_target");
|
171 |
+
bool saveFlag = parser.get<bool>("save");
|
172 |
+
bool visFlag = parser.get<bool>("vis");
|
173 |
+
|
174 |
+
if (modelPath.empty())
|
175 |
+
CV_Error(Error::StsError, "Model file " + modelPath + " not found");
|
176 |
+
|
177 |
+
PPHS humanSegmentationModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second);
|
178 |
+
|
179 |
+
VideoCapture cap;
|
180 |
+
if (!inputPath.empty())
|
181 |
+
cap.open(samples::findFile(inputPath));
|
182 |
+
else
|
183 |
+
cap.open(0);
|
184 |
+
|
185 |
+
if (!cap.isOpened())
|
186 |
+
CV_Error(Error::StsError, "Cannot opend video or file");
|
187 |
+
|
188 |
+
Mat frame;
|
189 |
+
Mat result;
|
190 |
+
static const std::string kWinName = "Human Segmentation Demo";
|
191 |
+
TickMeter tm;
|
192 |
+
|
193 |
+
while (waitKey(1) < 0)
|
194 |
+
{
|
195 |
+
cap >> frame;
|
196 |
+
|
197 |
+
if (frame.empty())
|
198 |
+
{
|
199 |
+
if(inputPath.empty())
|
200 |
+
cout << "Frame is empty" << endl;
|
201 |
+
break;
|
202 |
+
}
|
203 |
+
|
204 |
+
tm.start();
|
205 |
+
result = humanSegmentationModel.infer(frame);
|
206 |
+
tm.stop();
|
207 |
+
|
208 |
+
Mat res_frame = visualize(frame, result, tm.getFPS());
|
209 |
+
|
210 |
+
if(visFlag || inputPath.empty())
|
211 |
+
{
|
212 |
+
imshow(kWinName, res_frame);
|
213 |
+
if(!inputPath.empty())
|
214 |
+
waitKey(0);
|
215 |
+
}
|
216 |
+
if(saveFlag)
|
217 |
+
{
|
218 |
+
cout << "Results are saved to result.jpg" << endl;
|
219 |
+
|
220 |
+
imwrite("result.jpg", res_frame);
|
221 |
+
}
|
222 |
+
}
|
223 |
+
|
224 |
+
return 0;
|
225 |
+
}
|
226 |
+
|
models/human_segmentation_pphumanseg/demo.py
CHANGED
@@ -83,8 +83,8 @@ def visualize(image, result, weight=0.6, fps=None):
|
|
83 |
vis_result (np.ndarray): The visualized result.
|
84 |
"""
|
85 |
color_map = get_color_map_list(256)
|
86 |
-
color_map =
|
87 |
-
|
88 |
# Use OpenCV LUT for color mapping
|
89 |
c1 = cv.LUT(result, color_map[:, 0])
|
90 |
c2 = cv.LUT(result, color_map[:, 1])
|
@@ -158,3 +158,4 @@ if __name__ == '__main__':
|
|
158 |
cv.imshow('PPHumanSeg Demo', frame)
|
159 |
|
160 |
tm.reset()
|
|
|
|
83 |
vis_result (np.ndarray): The visualized result.
|
84 |
"""
|
85 |
color_map = get_color_map_list(256)
|
86 |
+
color_map = np.array(color_map).reshape(256, 3).astype(np.uint8)
|
87 |
+
|
88 |
# Use OpenCV LUT for color mapping
|
89 |
c1 = cv.LUT(result, color_map[:, 0])
|
90 |
c2 = cv.LUT(result, color_map[:, 1])
|
|
|
158 |
cv.imshow('PPHumanSeg Demo', frame)
|
159 |
|
160 |
tm.reset()
|
161 |
+
|