Query Attribute Modeling: Improving search relevance with Semantic Search and Meta Data Filtering
Paper
•
2508.04683
•
Published
Exploring Extreme Quantization techniques !
,
, and
formats + Code. Optimize. Scale. Secure.
- Full-stack execution, Claude-powered. No human bottlenecks.
.md
file = a fully defined expert persona@agent-name
directly"@security-auditor please review auth flow for risks"
"@cloud-architect + @devops-troubleshooter → design a resilient multi-region setup"
"@ai-engineer + @legal-advisor → build a privacy-safe RAG pipeline"
blocks between responses.from HelpingAI import HAI # pip install HelpingAI==1.1.1
from rich import print
hai = HAI(api_key="hl-***********************")
response = hai.chat.completions.create(
model="Dhanishtha-2.0-preview",
messages=[{"role": "user", "content": "What is the value of ∫0∞𝑥3/𝑥−1𝑑𝑥 ?"}],
stream=True,
hide_think=False # Hide or show models thinking
)
for chunk in response:
print(chunk.choices[0].delta.content, end="", flush=True)