wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5480
  • Wer: 0.3437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.5237 1.0 500 1.7277 0.9752
0.8339 2.01 1000 0.5413 0.5316
0.4277 3.01 1500 0.4732 0.4754
0.2907 4.02 2000 0.4571 0.4476
0.2254 5.02 2500 0.4611 0.4105
0.1911 6.02 3000 0.4448 0.4072
0.1595 7.03 3500 0.4517 0.3843
0.1377 8.03 4000 0.4551 0.3881
0.1197 9.04 4500 0.4853 0.3772
0.1049 10.04 5000 0.4617 0.3707
0.097 11.04 5500 0.4633 0.3622
0.0872 12.05 6000 0.4635 0.3690
0.0797 13.05 6500 0.5196 0.3749
0.0731 14.06 7000 0.5029 0.3639
0.0667 15.06 7500 0.5053 0.3614
0.0618 16.06 8000 0.5627 0.3638
0.0562 17.07 8500 0.5484 0.3577
0.0567 18.07 9000 0.5163 0.3560
0.0452 19.08 9500 0.5012 0.3538
0.044 20.08 10000 0.4931 0.3534
0.0424 21.08 10500 0.5147 0.3519
0.0356 22.09 11000 0.5540 0.3521
0.0322 23.09 11500 0.5565 0.3509
0.0333 24.1 12000 0.5315 0.3428
0.0281 25.1 12500 0.5284 0.3425
0.0261 26.1 13000 0.5101 0.3446
0.0256 27.11 13500 0.5432 0.3415
0.0229 28.11 14000 0.5484 0.3446
0.0212 29.12 14500 0.5480 0.3437

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support