library_name: peft | |
base_model: mistralai/Mistral-7B-v0.1 | |
pipeline_tag: text-generation | |
Description: Coding tasks in multiple languages\ | |
Original dataset: magicoder \ | |
---\ | |
Try querying this adapter for free in Lora Land at https://predibase.com/lora-land! \ | |
The adapter_category is STEM and the name is Code Generation (magicoder)\ | |
---\ | |
Sample input: Below is a programming problem, paired with a language in which the solution should be written. Write a solution in the provided that appropriately solves the programming problem.\n\n### Problem: | |
def strlen(string: str) -> int: | |
""" Return length of given string | |
>>> strlen('') | |
0 | |
>>> strlen('abc') | |
3 | |
""" | |
\n\n### Language: python\n\n### Solution: \ | |
---\ | |
Sample output: ```python | |
def strlen(string: str) -> int: | |
return len(string) | |
```\ | |
---\ | |
Try using this adapter yourself! | |
``` | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_id = "mistralai/Mistral-7B-v0.1" | |
peft_model_id = "predibase/magicoder" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
model.load_adapter(peft_model_id) | |
``` |