Add a heading.png

Bone-Fracture-Detection

Bone-Fracture-Detection is a binary image classification model based on google/siglip2-base-patch16-224, trained to detect fractures in bone X-ray images. It is designed for use in medical diagnostics, clinical triage, and radiology assistance systems.

Classification Report:
               precision    recall  f1-score   support

    Fractured     0.8633    0.7893    0.8246      4480
Not Fractured     0.8020    0.8722    0.8356      4383

     accuracy                         0.8303      8863
    macro avg     0.8326    0.8308    0.8301      8863
 weighted avg     0.8330    0.8303    0.8301      8863

download.png


Label Classes

The model distinguishes between the following bone conditions:

0: Fractured  
1: Not Fractured

Installation

pip install transformers torch pillow gradio

Example Inference Code

import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch

# Load model and processor
model_name = "prithivMLmods/Bone-Fracture-Detection"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)

# ID to label mapping
id2label = {
    "0": "Fractured",
    "1": "Not Fractured"
}

def detect_fracture(image):
    image = Image.fromarray(image).convert("RGB")
    inputs = processor(images=image, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()

    prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
    return prediction

# Gradio Interface
iface = gr.Interface(
    fn=detect_fracture,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Label(num_top_classes=2, label="Fracture Detection"),
    title="Bone-Fracture-Detection",
    description="Upload a bone X-ray image to detect if there is a fracture."
)

if __name__ == "__main__":
    iface.launch()

Applications

  • Orthopedic Diagnostic Support
  • Emergency Room Triage
  • Automated Radiology Review
  • Clinical Research in Bone Health
Downloads last month
10
Safetensors
Model size
92.9M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for prithivMLmods/Bone-Fracture-Detection

Finetuned
(83)
this model

Dataset used to train prithivMLmods/Bone-Fracture-Detection

Collection including prithivMLmods/Bone-Fracture-Detection