File size: 3,898 Bytes
daefa4a
 
 
 
233b25a
 
 
 
 
 
 
 
 
 
 
 
 
 
373a042
11c208c
9cac767
 
 
3cce231
 
 
11c208c
53da408
 
 
dab6b73
 
 
 
 
 
 
 
 
 
 
 
 
3cce231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2651e1
 
 
 
 
 
 
 
 
 
 
 
 
 
3cce231
 
 
 
 
9cac767
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: apache-2.0
datasets:
- prithivMLmods/Realistic-Portrait-Gender-1024px
language:
- en
base_model:
- google/siglip2-base-patch16-224
pipeline_tag: image-classification
library_name: transformers
tags:
- Gender
- Classification
- art
- realism
- portrait
- Male
- Female
- SigLIP2
---

![WrD.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/6TixjrntJJtmfFIFeoIef.png)

# **Realistic-Gender-Classification**

> **Realistic-Gender-Classification** is a binary image classification model based on `google/siglip2-base-patch16-224`, designed to classify **gender** from realistic human portrait images. It can be used in **demographic analysis**, **personalization systems**, and **automated tagging** in large-scale image datasets.

> [!note]
*SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786

```py
Classification Report:
                 precision    recall  f1-score   support

female portrait     0.9754    0.9656    0.9705      1600
  male portrait     0.9660    0.9756    0.9708      1600

       accuracy                         0.9706      3200
      macro avg     0.9707    0.9706    0.9706      3200
   weighted avg     0.9707    0.9706    0.9706      3200
```

![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Hl1qDGrIIZyiSOzOX8K8t.png)

---

## **Label Classes**

The model distinguishes between the following portrait gender categories:

```
0: female portrait  
1: male portrait
```

---

## **Installation**

```bash
pip install transformers torch pillow gradio
```

---

## **Example Inference Code**

```python
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch

# Load model and processor
model_name = "prithivMLmods/Realistic-Gender-Classification"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)

# ID to label mapping
id2label = {
    "0": "female portrait",
    "1": "male portrait"
}

def classify_gender(image):
    image = Image.fromarray(image).convert("RGB")
    inputs = processor(images=image, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()

    prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
    return prediction

# Gradio Interface
iface = gr.Interface(
    fn=classify_gender,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Label(num_top_classes=2, label="Gender Classification"),
    title="Realistic-Gender-Classification",
    description="Upload a realistic portrait image to classify it as 'female portrait' or 'male portrait'."
)

if __name__ == "__main__":
    iface.launch()
```

---

## Demo Inference

> [!note]
female portrait

![Screenshot 2025-05-10 at 17-09-35 Realistic-Gender-Classification.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/EC02LG1gUHsEkLCxCtBBH.png)
![Screenshot 2025-05-10 at 17-10-09 Realistic-Gender-Classification.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/ttk_eJYsSLTZIaao7u10f.png)

> [!note]
male portrait

![Screenshot 2025-05-10 at 17-10-48 Realistic-Gender-Classification.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/qCeP_BcpV5gWHtozZkhpE.png)
![Screenshot 2025-05-10 at 17-11-39 Realistic-Gender-Classification.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/mVT0ogVrQOckIHET6Vq4H.png)

## **Applications**

* **Demographic Insights in Visual Data**
* **Dataset Curation & Tagging**
* **Media Analytics**
* **Audience Profiling for Marketing**