ctrlv-speechrecognition-model

This model is a fine-tuned version of facebook/wav2vec2-base on the TIMIT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4730
  • Wer: 0.3031

Test WER in TIMIT dataset

  • Wer: 0.189

Google Colab Notebook

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.53 3.45 500 1.4021 0.9307
0.6077 6.9 1000 0.4255 0.4353
0.2331 10.34 1500 0.3887 0.3650
0.1436 13.79 2000 0.3579 0.3393
0.1021 17.24 2500 0.4447 0.3440
0.0797 20.69 3000 0.4041 0.3291
0.0657 24.14 3500 0.4262 0.3368
0.0525 27.59 4000 0.4937 0.3429
0.0454 31.03 4500 0.4449 0.3244
0.0373 34.48 5000 0.4363 0.3288
0.0321 37.93 5500 0.4519 0.3204
0.0288 41.38 6000 0.4440 0.3145
0.0259 44.83 6500 0.4691 0.3182
0.0203 48.28 7000 0.5062 0.3162
0.0171 51.72 7500 0.4762 0.3129
0.0166 55.17 8000 0.4772 0.3090
0.0147 58.62 8500 0.4730 0.3031

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.10.3
Downloads last month
17
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support