|
--- |
|
license: mit |
|
tags: |
|
- image-segmentation |
|
--- |
|
|
|
<h1 align="center">High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity</h1> |
|
|
|
|
|
<div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;"> |
|
<a href='https://arxiv.org/pdf/2410.10105'><img src='https://img.shields.io/badge/arXiv-DiffDIS-B31B1B'></a>  |
|
<a href='https://github.com/qianyu-dlut/DiffDIS'><img src='https://img.shields.io/badge/Github-DiffDIS-blue'></a>  |
|
<a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a>  |
|
</div> |
|
|
|
|
|
This repository contains the official implementation for the paper "[High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity](https://arxiv.org/pdf/2410.10105)" (ICLR 2025). |
|
|
|
<p align="center"> |
|
<img alt="DiffDIS teaser image" src="https://raw.githubusercontent.com/qianyu-dlut/DiffDIS/master/assets/image.png" width="900px"> |
|
</p> |
|
|
|
## How to use |
|
> For the complete training and inference process, please refer to our [GitHub Repository](https://github.com/qianyu-dlut/DiffDIS). This section specifically guides you on loading weights from Hugging Face. |
|
|
|
### Install Packages: |
|
```shell |
|
pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu118 |
|
pip install -r requirements.txt |
|
pip install -e diffusers-0.30.2/ |
|
``` |
|
|
|
### Load DiffDIS weights from Hugging Face: |
|
|
|
```python |
|
import torch |
|
from diffusers import ( |
|
DiffusionPipeline, |
|
DDPMScheduler, |
|
UNet2DConditionModel, |
|
AutoencoderKL, |
|
) |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
hf_model_path = 'qianyu1217/diffdis' |
|
vae = AutoencoderKL.from_pretrained(hf_model_path,subfolder='vae',trust_remote_code=True) |
|
scheduler = DDPMScheduler.from_pretrained(hf_model_path,subfolder='scheduler') |
|
text_encoder = CLIPTextModel.from_pretrained(hf_model_path,subfolder='text_encoder') |
|
tokenizer = CLIPTokenizer.from_pretrained(hf_model_path,subfolder='tokenizer') |
|
unet = UNet2DConditionModel_diffdis.from_pretrained(hf_model_path,subfolder="unet", |
|
in_channels=8, sample_size=96, |
|
low_cpu_mem_usage=False, |
|
ignore_mismatched_sizes=False, |
|
class_embed_type='projection', |
|
projection_class_embeddings_input_dim=4, |
|
mid_extra_cross=True, |
|
mode = 'DBIA', |
|
use_swci = True) |
|
pipe = DiffDISPipeline(unet=unet, |
|
vae=vae, |
|
scheduler=scheduler, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer) |
|
|
|
``` |
|
|
|
|
|
|
|
## Citation |
|
|
|
``` |
|
@article{DiffDIS, |
|
title={High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity}, |
|
author={Yu, Qian and Jiang, Peng-Tao and Zhang, Hao and Chen, Jinwei and Li, Bo and Zhang, Lihe and Lu, Huchuan}, |
|
journal={arXiv preprint arXiv:2410.10105}, |
|
year={2024} |
|
} |
|
``` |