BiseNet: Optimized for Mobile Deployment
Segment images or video by class in real-time on device
BiSeNet (Bilateral Segmentation Network) is a novel architecture designed for real-time semantic segmentation. It addresses the challenge of balancing spatial resolution and receptive field by employing a Spatial Path to preserve high-resolution features and a context path to capture sufficient receptive field.
This model is an implementation of BiseNet found here.
This repository provides scripts to run BiseNet on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.semantic_segmentation
- Model Stats:
- Model checkpoint: best_dice_loss_miou_0.655.pth
- Inference latency: RealTime
- Input resolution: 720x960
- Number of parameters: 12.0M
- Model size: 45.7 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
BiseNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 86.203 ms | 31 - 60 MB | NPU | BiseNet.tflite |
BiseNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 484.218 ms | 2 - 11 MB | NPU | Use Export Script |
BiseNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 35.41 ms | 32 - 85 MB | NPU | BiseNet.tflite |
BiseNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 41.337 ms | 8 - 46 MB | NPU | Use Export Script |
BiseNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 27.611 ms | 32 - 115 MB | NPU | BiseNet.tflite |
BiseNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 26.353 ms | 8 - 11 MB | NPU | Use Export Script |
BiseNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 34.71 ms | 32 - 60 MB | NPU | BiseNet.tflite |
BiseNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 32.472 ms | 2 - 13 MB | NPU | Use Export Script |
BiseNet | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 86.203 ms | 31 - 60 MB | NPU | BiseNet.tflite |
BiseNet | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 484.218 ms | 2 - 11 MB | NPU | Use Export Script |
BiseNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 27.886 ms | 13 - 58 MB | NPU | BiseNet.tflite |
BiseNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 26.523 ms | 8 - 11 MB | NPU | Use Export Script |
BiseNet | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 37.84 ms | 32 - 60 MB | NPU | BiseNet.tflite |
BiseNet | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 36.072 ms | 0 - 17 MB | NPU | Use Export Script |
BiseNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 27.651 ms | 12 - 59 MB | NPU | BiseNet.tflite |
BiseNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 26.861 ms | 8 - 10 MB | NPU | Use Export Script |
BiseNet | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 34.71 ms | 32 - 60 MB | NPU | BiseNet.tflite |
BiseNet | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 32.472 ms | 2 - 13 MB | NPU | Use Export Script |
BiseNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 28.218 ms | 18 - 64 MB | NPU | BiseNet.tflite |
BiseNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 26.579 ms | 8 - 20 MB | NPU | Use Export Script |
BiseNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 30.921 ms | 64 - 139 MB | NPU | BiseNet.onnx |
BiseNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 20.676 ms | 30 - 82 MB | NPU | BiseNet.tflite |
BiseNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 20.607 ms | 8 - 50 MB | NPU | Use Export Script |
BiseNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 26.167 ms | 73 - 121 MB | NPU | BiseNet.onnx |
BiseNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 19.255 ms | 31 - 64 MB | NPU | BiseNet.tflite |
BiseNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 16.623 ms | 8 - 47 MB | NPU | Use Export Script |
BiseNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 21.068 ms | 73 - 120 MB | NPU | BiseNet.onnx |
BiseNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 25.143 ms | 8 - 8 MB | NPU | Use Export Script |
BiseNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 30.243 ms | 66 - 66 MB | NPU | BiseNet.onnx |
Installation
Install the package via pip:
pip install qai-hub-models
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.bisenet.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.bisenet.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.bisenet.export
Profiling Results
------------------------------------------------------------
BiseNet
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 86.2
Estimated peak memory usage (MB): [31, 60]
Total # Ops : 63
Compute Unit(s) : npu (63 ops) gpu (0 ops) cpu (0 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.bisenet import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.bisenet.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.bisenet.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on BiseNet's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of BiseNet can be found [here](This model's original implementation does not provide a LICENSE.).
- The license for the compiled assets for on-device deployment can be found here
References
- BiSeNet Bilateral Segmentation Network for Real-time Semantic Segmentation
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 75