|
--- |
|
library_name: pytorch |
|
license: other |
|
tags: |
|
- android |
|
pipeline_tag: image-to-text |
|
|
|
--- |
|
|
|
 |
|
|
|
# EasyOCR: Optimized for Mobile Deployment |
|
## Ready-to-use OCR with 80+ supported languages and all popular writing scripts |
|
|
|
|
|
EasyOCR is a machine learning model that can recognize text in images. It supports 80+ supported languages and all popular writing scripts. |
|
|
|
This model is an implementation of EasyOCR found [here](https://github.com/JaidedAI/EasyOCR). |
|
|
|
|
|
This repository provides scripts to run EasyOCR on Qualcomm® devices. |
|
More details on model performance across various devices, can be found |
|
[here](https://aihub.qualcomm.com/models/easyocr). |
|
|
|
|
|
### Model Details |
|
|
|
- **Model Type:** Model_use_case.image_to_text |
|
- **Model Stats:** |
|
- Model checkpoint: easyocr-small-stage1 |
|
- Input resolution: 384x384 |
|
- Number of parameters (EasyOCRDetector): 20.8M |
|
- Model size (EasyOCRDetector) (float): 79.2 MB |
|
- Number of parameters (EasyOCRRecognizer): 3.84M |
|
- Model size (EasyOCRRecognizer) (float): 14.7 MB |
|
|
|
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|
|---|---|---|---|---|---|---|---|---| |
|
| EasyOCRDetector | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 275.395 ms | 16 - 48 MB | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRDetector | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 70.032 ms | 16 - 80 MB | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRDetector | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 77.222 ms | 6 - 46 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRDetector | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 41.349 ms | 10 - 174 MB | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRDetector | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 38.731 ms | 6 - 20 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRDetector | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 71.811 ms | 16 - 47 MB | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRDetector | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 275.395 ms | 16 - 48 MB | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRDetector | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 41.538 ms | 9 - 176 MB | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRDetector | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 38.241 ms | 6 - 22 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRDetector | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 78.5 ms | 16 - 52 MB | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRDetector | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 75.171 ms | 3 - 42 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRDetector | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 42.108 ms | 10 - 235 MB | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRDetector | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 39.498 ms | 6 - 22 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRDetector | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 71.811 ms | 16 - 47 MB | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRDetector | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 40.7 ms | 10 - 169 MB | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRDetector | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 38.982 ms | 6 - 19 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRDetector | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 39.883 ms | 41 - 52 MB | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.onnx) | |
|
| EasyOCRDetector | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 29.897 ms | 15 - 73 MB | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRDetector | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 28.602 ms | 6 - 43 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRDetector | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 28.788 ms | 5 - 44 MB | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.onnx) | |
|
| EasyOCRDetector | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 28.571 ms | 15 - 52 MB | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRDetector | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 23.563 ms | 3 - 40 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRDetector | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 23.753 ms | 41 - 77 MB | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.onnx) | |
|
| EasyOCRDetector | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 40.303 ms | 27 - 27 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRDetector | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 40.544 ms | 65 - 65 MB | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.onnx) | |
|
| EasyOCRRecognizer | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 477.336 ms | 11 - 21 MB | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRRecognizer | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 139.821 ms | 6 - 28 MB | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRRecognizer | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 37.902 ms | 0 - 198 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRRecognizer | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 112.227 ms | 7 - 10 MB | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRRecognizer | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 24.989 ms | 0 - 100 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRRecognizer | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 361.231 ms | 8 - 20 MB | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRRecognizer | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 477.336 ms | 11 - 21 MB | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRRecognizer | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 114.78 ms | 1 - 4 MB | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRRecognizer | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 25.085 ms | 0 - 104 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRRecognizer | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 221.694 ms | 10 - 28 MB | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRRecognizer | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 40.492 ms | 0 - 198 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRRecognizer | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 113.754 ms | 0 - 2 MB | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRRecognizer | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 25.287 ms | 0 - 102 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRRecognizer | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 361.231 ms | 8 - 20 MB | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRRecognizer | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 112.467 ms | 5 - 8 MB | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRRecognizer | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 25.199 ms | 0 - 102 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRRecognizer | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 22.099 ms | 3 - 10 MB | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.onnx) | |
|
| EasyOCRRecognizer | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 105.48 ms | 9 - 30 MB | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRRecognizer | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 18.404 ms | 0 - 500 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRRecognizer | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 15.993 ms | 3 - 23 MB | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.onnx) | |
|
| EasyOCRRecognizer | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 107.36 ms | 20 - 35 MB | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.tflite) | |
|
| EasyOCRRecognizer | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 18.95 ms | 0 - 504 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRRecognizer | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 14.455 ms | 3 - 21 MB | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.onnx) | |
|
| EasyOCRRecognizer | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 25.134 ms | 83 - 83 MB | NPU | [EasyOCR.dlc](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.dlc) | |
|
| EasyOCRRecognizer | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 20.59 ms | 0 - 0 MB | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCR.onnx) | |
|
|
|
|
|
|
|
|
|
## Installation |
|
|
|
|
|
Install the package via pip: |
|
```bash |
|
pip install "qai-hub-models[easyocr]" |
|
``` |
|
|
|
|
|
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device |
|
|
|
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your |
|
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. |
|
|
|
With this API token, you can configure your client to run models on the cloud |
|
hosted devices. |
|
```bash |
|
qai-hub configure --api_token API_TOKEN |
|
``` |
|
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. |
|
|
|
|
|
|
|
## Demo off target |
|
|
|
The package contains a simple end-to-end demo that downloads pre-trained |
|
weights and runs this model on a sample input. |
|
|
|
```bash |
|
python -m qai_hub_models.models.easyocr.demo |
|
``` |
|
|
|
The above demo runs a reference implementation of pre-processing, model |
|
inference, and post processing. |
|
|
|
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like |
|
environment, please add the following to your cell (instead of the above). |
|
``` |
|
%run -m qai_hub_models.models.easyocr.demo |
|
``` |
|
|
|
|
|
### Run model on a cloud-hosted device |
|
|
|
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® |
|
device. This script does the following: |
|
* Performance check on-device on a cloud-hosted device |
|
* Downloads compiled assets that can be deployed on-device for Android. |
|
* Accuracy check between PyTorch and on-device outputs. |
|
|
|
```bash |
|
python -m qai_hub_models.models.easyocr.export |
|
``` |
|
``` |
|
Profiling Results |
|
------------------------------------------------------------ |
|
EasyOCRDetector |
|
Device : cs_8275 (ANDROID 14) |
|
Runtime : TFLITE |
|
Estimated inference time (ms) : 275.4 |
|
Estimated peak memory usage (MB): [16, 48] |
|
Total # Ops : 42 |
|
Compute Unit(s) : npu (42 ops) gpu (0 ops) cpu (0 ops) |
|
|
|
------------------------------------------------------------ |
|
EasyOCRRecognizer |
|
Device : cs_8275 (ANDROID 14) |
|
Runtime : TFLITE |
|
Estimated inference time (ms) : 477.3 |
|
Estimated peak memory usage (MB): [11, 21] |
|
Total # Ops : 136 |
|
Compute Unit(s) : npu (0 ops) gpu (0 ops) cpu (136 ops) |
|
``` |
|
|
|
|
|
## How does this work? |
|
|
|
This [export script](https://aihub.qualcomm.com/models/easyocr/qai_hub_models/models/EasyOCR/export.py) |
|
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model |
|
on-device. Lets go through each step below in detail: |
|
|
|
Step 1: **Compile model for on-device deployment** |
|
|
|
To compile a PyTorch model for on-device deployment, we first trace the model |
|
in memory using the `jit.trace` and then call the `submit_compile_job` API. |
|
|
|
```python |
|
import torch |
|
|
|
import qai_hub as hub |
|
from qai_hub_models.models.easyocr import Model |
|
|
|
# Load the model |
|
torch_model = Model.from_pretrained() |
|
|
|
# Device |
|
device = hub.Device("Samsung Galaxy S24") |
|
|
|
# Trace model |
|
input_shape = torch_model.get_input_spec() |
|
sample_inputs = torch_model.sample_inputs() |
|
|
|
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) |
|
|
|
# Compile model on a specific device |
|
compile_job = hub.submit_compile_job( |
|
model=pt_model, |
|
device=device, |
|
input_specs=torch_model.get_input_spec(), |
|
) |
|
|
|
# Get target model to run on-device |
|
target_model = compile_job.get_target_model() |
|
|
|
``` |
|
|
|
|
|
Step 2: **Performance profiling on cloud-hosted device** |
|
|
|
After compiling models from step 1. Models can be profiled model on-device using the |
|
`target_model`. Note that this scripts runs the model on a device automatically |
|
provisioned in the cloud. Once the job is submitted, you can navigate to a |
|
provided job URL to view a variety of on-device performance metrics. |
|
```python |
|
profile_job = hub.submit_profile_job( |
|
model=target_model, |
|
device=device, |
|
) |
|
|
|
``` |
|
|
|
Step 3: **Verify on-device accuracy** |
|
|
|
To verify the accuracy of the model on-device, you can run on-device inference |
|
on sample input data on the same cloud hosted device. |
|
```python |
|
input_data = torch_model.sample_inputs() |
|
inference_job = hub.submit_inference_job( |
|
model=target_model, |
|
device=device, |
|
inputs=input_data, |
|
) |
|
on_device_output = inference_job.download_output_data() |
|
|
|
``` |
|
With the output of the model, you can compute like PSNR, relative errors or |
|
spot check the output with expected output. |
|
|
|
**Note**: This on-device profiling and inference requires access to Qualcomm® |
|
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). |
|
|
|
|
|
|
|
|
|
## Deploying compiled model to Android |
|
|
|
|
|
The models can be deployed using multiple runtimes: |
|
- TensorFlow Lite (`.tflite` export): [This |
|
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a |
|
guide to deploy the .tflite model in an Android application. |
|
|
|
|
|
- QNN (`.so` export ): This [sample |
|
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) |
|
provides instructions on how to use the `.so` shared library in an Android application. |
|
|
|
|
|
## View on Qualcomm® AI Hub |
|
Get more details on EasyOCR's performance across various devices [here](https://aihub.qualcomm.com/models/easyocr). |
|
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) |
|
|
|
|
|
## License |
|
* The license for the original implementation of EasyOCR can be found |
|
[here](https://github.com/JaidedAI/EasyOCR/blob/master/LICENSE). |
|
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) |
|
|
|
|
|
|
|
## References |
|
* [Source Model Implementation](https://github.com/JaidedAI/EasyOCR) |
|
|
|
|
|
|
|
## Community |
|
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. |
|
* For questions or feedback please [reach out to us](mailto:[email protected]). |
|
|
|
|
|
|