File size: 17,175 Bytes
bd53889
 
14db541
bd53889
 
a24e1ee
bd53889
 
 
 
 
 
 
 
8cdfd78
bd53889
 
d3eeeaa
8cdfd78
 
bd53889
 
 
 
 
 
 
14db541
bd53889
 
 
 
14db541
 
bd53889
14db541
45120b5
46d57b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd53889
c71493f
 
bd53889
 
 
 
fb6c1d5
bd53889
c71493f
bd53889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45120b5
 
 
14db541
 
46d57b5
14db541
 
 
bd53889
c71493f
 
bd53889
 
c71493f
bd53889
 
 
 
 
 
 
 
 
 
 
 
bb5d8c8
bd53889
 
bb5d8c8
bd53889
 
fb6c1d5
bd53889
bb5d8c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd53889
 
 
 
 
 
 
 
 
 
 
 
dc0f30c
 
 
ce4274f
bd53889
 
 
 
 
 
 
 
 
dc0f30c
 
 
 
ce4274f
bd53889
 
 
 
 
 
 
 
 
c71493f
bd53889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45120b5
bd53889
fb6c1d5
 
45120b5
 
 
bd53889
 
 
 
 
45120b5
 
bd53889
fbf3659
bd53889
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: depth-estimation

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/midas/web-assets/model_demo.png)

# Midas-V2: Optimized for Mobile Deployment
## Deep Convolutional Neural Network model for depth estimation


Midas is designed for estimating depth at each point in an image.

This model is an implementation of Midas-V2 found [here](https://github.com/isl-org/MiDaS).


This repository provides scripts to run Midas-V2 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/midas).


### Model Details

- **Model Type:** Model_use_case.depth_estimation
- **Model Stats:**
  - Model checkpoint: MiDaS_small
  - Input resolution: 256x256
  - Number of parameters: 16.6M
  - Model size (float): 63.2 MB
  - Model size (w8a8): 16.6 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Midas-V2 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 12.862 ms | 0 - 39 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
| Midas-V2 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 12.36 ms | 1 - 11 MB | NPU | Use Export Script |
| Midas-V2 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 4.982 ms | 0 - 50 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
| Midas-V2 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 7.353 ms | 0 - 35 MB | NPU | Use Export Script |
| Midas-V2 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 3.239 ms | 0 - 255 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
| Midas-V2 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 3.009 ms | 1 - 3 MB | NPU | Use Export Script |
| Midas-V2 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 4.546 ms | 0 - 41 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
| Midas-V2 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 4.235 ms | 0 - 14 MB | NPU | Use Export Script |
| Midas-V2 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 12.862 ms | 0 - 39 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
| Midas-V2 | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 12.36 ms | 1 - 11 MB | NPU | Use Export Script |
| Midas-V2 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 3.23 ms | 0 - 253 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
| Midas-V2 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 3.014 ms | 0 - 2 MB | NPU | Use Export Script |
| Midas-V2 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 5.754 ms | 0 - 25 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
| Midas-V2 | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 5.421 ms | 1 - 18 MB | NPU | Use Export Script |
| Midas-V2 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 3.233 ms | 0 - 274 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
| Midas-V2 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 3.011 ms | 1 - 3 MB | NPU | Use Export Script |
| Midas-V2 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 4.546 ms | 0 - 41 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
| Midas-V2 | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 4.235 ms | 0 - 14 MB | NPU | Use Export Script |
| Midas-V2 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 3.243 ms | 0 - 261 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
| Midas-V2 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 3.034 ms | 0 - 14 MB | NPU | Use Export Script |
| Midas-V2 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 2.98 ms | 0 - 73 MB | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.onnx) |
| Midas-V2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 2.293 ms | 0 - 65 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
| Midas-V2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 2.188 ms | 1 - 37 MB | NPU | Use Export Script |
| Midas-V2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2.059 ms | 0 - 47 MB | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.onnx) |
| Midas-V2 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.792 ms | 0 - 43 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
| Midas-V2 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 1.91 ms | 1 - 29 MB | NPU | Use Export Script |
| Midas-V2 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 1.948 ms | 1 - 32 MB | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.onnx) |
| Midas-V2 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.213 ms | 1 - 1 MB | NPU | Use Export Script |
| Midas-V2 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.065 ms | 35 - 35 MB | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.onnx) |
| Midas-V2 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2.464 ms | 0 - 27 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 2.831 ms | 0 - 10 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.574 ms | 0 - 47 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 1.986 ms | 0 - 45 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.064 ms | 0 - 134 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 1.293 ms | 0 - 4 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.353 ms | 0 - 30 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 1.574 ms | 0 - 15 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 3.612 ms | 0 - 45 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 5.705 ms | 0 - 14 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 16.032 ms | 0 - 3 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2.464 ms | 0 - 27 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN | 2.831 ms | 0 - 10 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.062 ms | 0 - 132 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 1.289 ms | 0 - 2 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.891 ms | 0 - 31 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN | 2.156 ms | 0 - 16 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.057 ms | 0 - 133 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 1.289 ms | 0 - 2 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.353 ms | 0 - 30 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN | 1.574 ms | 0 - 15 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.072 ms | 0 - 132 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 1.292 ms | 0 - 122 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 115.256 ms | 12 - 119 MB | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.onnx) |
| Midas-V2 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.762 ms | 0 - 57 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 0.903 ms | 0 - 54 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 93.772 ms | 24 - 356 MB | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.onnx) |
| Midas-V2 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.675 ms | 0 - 30 MB | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.tflite) |
| Midas-V2 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 0.682 ms | 0 - 32 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 98.215 ms | 28 - 355 MB | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.onnx) |
| Midas-V2 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.419 ms | 0 - 0 MB | NPU | Use Export Script |
| Midas-V2 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 123.184 ms | 65 - 65 MB | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2_w8a8.onnx) |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[midas]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.midas.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.midas.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.midas.export
```
```
Profiling Results
------------------------------------------------------------
Midas-V2
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : TFLITE                               
Estimated inference time (ms)   : 12.9                                 
Estimated peak memory usage (MB): [0, 39]                              
Total # Ops                     : 138                                  
Compute Unit(s)                 : npu (138 ops) gpu (0 ops) cpu (0 ops)
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/midas/qai_hub_models/models/Midas-V2/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.midas import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.midas.demo --on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.midas.demo -- --on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Midas-V2's performance across various devices [here](https://aihub.qualcomm.com/models/midas).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Midas-V2 can be found
  [here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
* [Source Model Implementation](https://github.com/isl-org/MiDaS)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).