MobileSam: Optimized for Mobile Deployment
Faster Segment Anything: Towards lightweight SAM for mobile applications
Transformer based encoder-decoder where prompts specify what to segment in an image thereby allowing segmentation without the need for additional training. The image encoder generates embeddings and the lightweight decoder operates on the embeddings for point and mask based image segmentation.
This model is an implementation of MobileSam found here.
This repository provides scripts to run MobileSam on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.semantic_segmentation
- Model Stats:
- Model checkpoint: vit_t
- Input resolution: 720p (720x1280)
- Number of parameters (SAMEncoder): 6.95M
- Model size (SAMEncoder) (float): 26.6 MB
- Number of parameters (SAMDecoder): 6.16M
- Model size (SAMDecoder) (float): 23.7 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
MobileSAMEncoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 673.998 ms | 0 - 1103 MB | NPU | MobileSam.tflite |
MobileSAMEncoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 514.019 ms | 0 - 2092 MB | NPU | MobileSam.tflite |
MobileSAMEncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 391.236 ms | 3 - 90 MB | NPU | MobileSam.tflite |
MobileSAMEncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 403.861 ms | 100 - 152 MB | NPU | MobileSam.onnx.zip |
MobileSAMEncoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 395.117 ms | 4 - 1109 MB | NPU | MobileSam.tflite |
MobileSAMEncoder | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 673.998 ms | 0 - 1103 MB | NPU | MobileSam.tflite |
MobileSAMEncoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 395.135 ms | 3 - 94 MB | NPU | MobileSam.tflite |
MobileSAMEncoder | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 554.71 ms | 4 - 1116 MB | NPU | MobileSam.tflite |
MobileSAMEncoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 394.656 ms | 4 - 87 MB | NPU | MobileSam.tflite |
MobileSAMEncoder | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 395.117 ms | 4 - 1109 MB | NPU | MobileSam.tflite |
MobileSAMEncoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 395.827 ms | 4 - 68 MB | NPU | MobileSam.tflite |
MobileSAMEncoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 406.853 ms | 100 - 151 MB | NPU | MobileSam.onnx.zip |
MobileSAMEncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 291.427 ms | 0 - 1773 MB | NPU | MobileSam.tflite |
MobileSAMEncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 313.829 ms | 121 - 820 MB | NPU | MobileSam.onnx.zip |
MobileSAMEncoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 270.943 ms | 0 - 1064 MB | NPU | MobileSam.tflite |
MobileSAMEncoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 266.121 ms | 126 - 511 MB | NPU | MobileSam.onnx.zip |
MobileSAMEncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 449.032 ms | 132 - 132 MB | NPU | MobileSam.onnx.zip |
MobileSAMDecoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 16.511 ms | 0 - 46 MB | NPU | MobileSam.tflite |
MobileSAMDecoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 8.596 ms | 0 - 53 MB | NPU | MobileSam.tflite |
MobileSAMDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 7.302 ms | 0 - 31 MB | NPU | MobileSam.tflite |
MobileSAMDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 8.28 ms | 0 - 49 MB | NPU | MobileSam.onnx.zip |
MobileSAMDecoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 8.502 ms | 0 - 48 MB | NPU | MobileSam.tflite |
MobileSAMDecoder | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 16.511 ms | 0 - 46 MB | NPU | MobileSam.tflite |
MobileSAMDecoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 7.287 ms | 0 - 29 MB | NPU | MobileSam.tflite |
MobileSAMDecoder | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 9.971 ms | 0 - 53 MB | NPU | MobileSam.tflite |
MobileSAMDecoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 7.293 ms | 0 - 31 MB | NPU | MobileSam.tflite |
MobileSAMDecoder | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 8.502 ms | 0 - 48 MB | NPU | MobileSam.tflite |
MobileSAMDecoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 7.293 ms | 0 - 31 MB | NPU | MobileSam.tflite |
MobileSAMDecoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 8.371 ms | 0 - 48 MB | NPU | MobileSam.onnx.zip |
MobileSAMDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 5.15 ms | 0 - 59 MB | NPU | MobileSam.tflite |
MobileSAMDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 5.503 ms | 4 - 105 MB | NPU | MobileSam.onnx.zip |
MobileSAMDecoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 4.103 ms | 0 - 52 MB | NPU | MobileSam.tflite |
MobileSAMDecoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.948 ms | 1 - 110 MB | NPU | MobileSam.onnx.zip |
MobileSAMDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.383 ms | 11 - 11 MB | NPU | MobileSam.onnx.zip |
Installation
Install the package via pip:
pip install "qai-hub-models[mobilesam]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.mobilesam.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.mobilesam.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.mobilesam.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.mobilesam import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.mobilesam.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.mobilesam.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on MobileSam's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of MobileSam can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 246