QuickSRNetMedium: Optimized for Mobile Deployment

Upscale images and remove image noise

QuickSRNet Medium is designed for upscaling images on mobile platforms to sharpen in real-time.

This model is an implementation of QuickSRNetMedium found here.

This repository provides scripts to run QuickSRNetMedium on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.super_resolution
  • Model Stats:
    • Model checkpoint: quicksrnet_medium_3x_checkpoint
    • Input resolution: 128x128
    • Number of parameters: 55.0K
    • Model size (float): 220 KB
    • Model size (w8a8): 67.2 KB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
QuickSRNetMedium float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 5.08 ms 4 - 13 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN 2.649 ms 0 - 10 MB NPU Use Export Script
QuickSRNetMedium float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 1.995 ms 6 - 27 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN 1.268 ms 0 - 19 MB NPU Use Export Script
QuickSRNetMedium float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.323 ms 0 - 10 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN 0.854 ms 0 - 4 MB NPU Use Export Script
QuickSRNetMedium float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 2.225 ms 0 - 14 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN 1.301 ms 0 - 15 MB NPU Use Export Script
QuickSRNetMedium float SA7255P ADP Qualcomm® SA7255P TFLITE 5.08 ms 4 - 13 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium float SA7255P ADP Qualcomm® SA7255P QNN 2.649 ms 0 - 10 MB NPU Use Export Script
QuickSRNetMedium float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.389 ms 0 - 9 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN 0.861 ms 0 - 2 MB NPU Use Export Script
QuickSRNetMedium float SA8295P ADP Qualcomm® SA8295P TFLITE 4.051 ms 6 - 23 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium float SA8295P ADP Qualcomm® SA8295P QNN 1.438 ms 0 - 20 MB NPU Use Export Script
QuickSRNetMedium float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.385 ms 0 - 9 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN 0.858 ms 0 - 2 MB NPU Use Export Script
QuickSRNetMedium float SA8775P ADP Qualcomm® SA8775P TFLITE 2.225 ms 0 - 14 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium float SA8775P ADP Qualcomm® SA8775P QNN 1.301 ms 0 - 15 MB NPU Use Export Script
QuickSRNetMedium float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 1.33 ms 0 - 9 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN 0.866 ms 0 - 6 MB NPU Use Export Script
QuickSRNetMedium float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 1.471 ms 0 - 7 MB NPU QuickSRNetMedium.onnx
QuickSRNetMedium float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.853 ms 0 - 22 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN 0.502 ms 0 - 23 MB NPU Use Export Script
QuickSRNetMedium float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 0.942 ms 0 - 24 MB NPU QuickSRNetMedium.onnx
QuickSRNetMedium float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 1.072 ms 0 - 16 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN 0.717 ms 0 - 19 MB NPU Use Export Script
QuickSRNetMedium float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 0.862 ms 0 - 15 MB NPU QuickSRNetMedium.onnx
QuickSRNetMedium float Snapdragon X Elite CRD Snapdragon® X Elite QNN 0.955 ms 0 - 0 MB NPU Use Export Script
QuickSRNetMedium float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.39 ms 8 - 8 MB NPU QuickSRNetMedium.onnx
QuickSRNetMedium w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 2.533 ms 0 - 10 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN 0.882 ms 0 - 10 MB NPU Use Export Script
QuickSRNetMedium w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 2.707 ms 2 - 22 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN 0.61 ms 0 - 23 MB NPU Use Export Script
QuickSRNetMedium w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.13 ms 0 - 7 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN 0.362 ms 0 - 3 MB NPU Use Export Script
QuickSRNetMedium w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 1.916 ms 1 - 14 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN 0.561 ms 0 - 15 MB NPU Use Export Script
QuickSRNetMedium w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 2.509 ms 0 - 19 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN 0.91 ms 0 - 12 MB NPU Use Export Script
QuickSRNetMedium w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 11.901 ms 2 - 4 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 2.533 ms 0 - 10 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 SA7255P ADP Qualcomm® SA7255P QNN 0.882 ms 0 - 10 MB NPU Use Export Script
QuickSRNetMedium w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.13 ms 2 - 7 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN 0.366 ms 0 - 3 MB NPU Use Export Script
QuickSRNetMedium w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 1.777 ms 0 - 15 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 SA8295P ADP Qualcomm® SA8295P QNN 0.669 ms 0 - 19 MB NPU Use Export Script
QuickSRNetMedium w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.131 ms 0 - 6 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN 0.364 ms 0 - 2 MB NPU Use Export Script
QuickSRNetMedium w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 1.916 ms 1 - 14 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 SA8775P ADP Qualcomm® SA8775P QNN 0.561 ms 0 - 15 MB NPU Use Export Script
QuickSRNetMedium w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 1.129 ms 0 - 6 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN 0.379 ms 0 - 10 MB NPU Use Export Script
QuickSRNetMedium w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 5.913 ms 12 - 17 MB NPU QuickSRNetMedium.onnx
QuickSRNetMedium w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.924 ms 0 - 22 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN 0.227 ms 0 - 22 MB NPU Use Export Script
QuickSRNetMedium w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 4.067 ms 14 - 33 MB NPU QuickSRNetMedium.onnx
QuickSRNetMedium w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 1.203 ms 0 - 17 MB NPU QuickSRNetMedium.tflite
QuickSRNetMedium w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN 0.278 ms 0 - 18 MB NPU Use Export Script
QuickSRNetMedium w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 3.313 ms 0 - 13 MB NPU QuickSRNetMedium.onnx
QuickSRNetMedium w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN 0.469 ms 0 - 0 MB NPU Use Export Script
QuickSRNetMedium w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 4.612 ms 14 - 14 MB NPU QuickSRNetMedium.onnx

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.quicksrnetmedium.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.quicksrnetmedium.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.quicksrnetmedium.export
Profiling Results
------------------------------------------------------------
QuickSRNetMedium
Device                          : cs_8275 (ANDROID 14)                
Runtime                         : TFLITE                              
Estimated inference time (ms)   : 5.1                                 
Estimated peak memory usage (MB): [4, 13]                             
Total # Ops                     : 17                                  
Compute Unit(s)                 : npu (14 ops) gpu (0 ops) cpu (3 ops)

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.quicksrnetmedium import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.quicksrnetmedium.demo --on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.quicksrnetmedium.demo -- --on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on QuickSRNetMedium's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of QuickSRNetMedium can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support