|
--- |
|
library_name: pytorch |
|
license: other |
|
tags: |
|
- real_time |
|
- android |
|
pipeline_tag: image-segmentation |
|
|
|
--- |
|
|
|
 |
|
|
|
# Segformer-Base: Optimized for Mobile Deployment |
|
## Real-time object segmentation |
|
|
|
|
|
Segformer Base is a machine learning model that predicts masks and classes of objects in an image. |
|
|
|
This model is an implementation of Segformer-Base found [here](https://github.com/huggingface/transformers/tree/main/src/transformers/models/segformer). |
|
|
|
|
|
This repository provides scripts to run Segformer-Base on Qualcomm® devices. |
|
More details on model performance across various devices, can be found |
|
[here](https://aihub.qualcomm.com/models/segformer_base). |
|
|
|
|
|
### Model Details |
|
|
|
- **Model Type:** Model_use_case.semantic_segmentation |
|
- **Model Stats:** |
|
- Model checkpoint: nvidia/segformer-b0-finetuned-ade-512-512 |
|
- Input resolution: 512x512 |
|
- Number of output classes: 150 |
|
- Number of parameters: 3.75M |
|
- Model size (float): 14.4 MB |
|
- Model size (w8a16): 4.57 MB |
|
- Model size (w8a8): 3.90 MB |
|
|
|
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|
|---|---|---|---|---|---|---|---|---| |
|
| Segformer-Base | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 218.091 ms | 7 - 56 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.tflite) | |
|
| Segformer-Base | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 214.118 ms | 3 - 47 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 112.468 ms | 9 - 68 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.tflite) | |
|
| Segformer-Base | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 111.857 ms | 3 - 59 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 111.553 ms | 9 - 25 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.tflite) | |
|
| Segformer-Base | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 107.503 ms | 3 - 19 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 114.381 ms | 9 - 58 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.tflite) | |
|
| Segformer-Base | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 110.089 ms | 3 - 49 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 218.091 ms | 7 - 56 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.tflite) | |
|
| Segformer-Base | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 214.118 ms | 3 - 47 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 111.709 ms | 9 - 18 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.tflite) | |
|
| Segformer-Base | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 107.559 ms | 4 - 25 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 124.241 ms | 10 - 59 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.tflite) | |
|
| Segformer-Base | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 121.413 ms | 2 - 50 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 111.886 ms | 9 - 22 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.tflite) | |
|
| Segformer-Base | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 108.177 ms | 2 - 18 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 114.381 ms | 9 - 58 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.tflite) | |
|
| Segformer-Base | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 110.089 ms | 3 - 49 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 111.674 ms | 9 - 28 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.tflite) | |
|
| Segformer-Base | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 107.49 ms | 3 - 17 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 110.766 ms | 19 - 52 MB | NPU | [Segformer-Base.onnx](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.onnx) | |
|
| Segformer-Base | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 83.455 ms | 8 - 67 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.tflite) | |
|
| Segformer-Base | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 82.171 ms | 3 - 57 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 83.613 ms | 23 - 82 MB | NPU | [Segformer-Base.onnx](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.onnx) | |
|
| Segformer-Base | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 96.464 ms | 9 - 60 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.tflite) | |
|
| Segformer-Base | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 91.582 ms | 3 - 55 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 94.185 ms | 26 - 73 MB | NPU | [Segformer-Base.onnx](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.onnx) | |
|
| Segformer-Base | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 115.101 ms | 3 - 3 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.dlc) | |
|
| Segformer-Base | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 118.39 ms | 33 - 33 MB | NPU | [Segformer-Base.onnx](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base.onnx) | |
|
| Segformer-Base | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 21.798 ms | 2 - 36 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 14.19 ms | 2 - 46 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 11.988 ms | 2 - 15 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 12.736 ms | 2 - 43 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 43.445 ms | 2 - 68 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 21.798 ms | 2 - 36 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 12.016 ms | 2 - 16 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 14.34 ms | 2 - 39 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 12.011 ms | 2 - 14 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 12.736 ms | 2 - 43 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 12.041 ms | 0 - 17 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 39.266 ms | 28 - 107 MB | NPU | [Segformer-Base.onnx](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.onnx) | |
|
| Segformer-Base | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 7.936 ms | 2 - 48 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 28.437 ms | 30 - 290 MB | NPU | [Segformer-Base.onnx](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.onnx) | |
|
| Segformer-Base | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 7.37 ms | 2 - 43 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 28.693 ms | 27 - 239 MB | NPU | [Segformer-Base.onnx](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.onnx) | |
|
| Segformer-Base | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 13.124 ms | 0 - 0 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.dlc) | |
|
| Segformer-Base | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 44.478 ms | 58 - 58 MB | NPU | [Segformer-Base.onnx](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a16.onnx) | |
|
| Segformer-Base | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 23.138 ms | 2 - 40 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 12.524 ms | 1 - 33 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 13.256 ms | 2 - 48 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 8.019 ms | 0 - 43 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 12.842 ms | 2 - 12 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 6.899 ms | 1 - 13 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 13.477 ms | 2 - 41 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 7.549 ms | 1 - 34 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 135.049 ms | 15 - 55 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 26.04 ms | 1 - 47 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 427.955 ms | 1 - 39 MB | CPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 23.138 ms | 2 - 40 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 12.524 ms | 1 - 33 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 12.87 ms | 0 - 12 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 6.934 ms | 1 - 11 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 15.14 ms | 2 - 42 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 8.733 ms | 1 - 35 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 12.953 ms | 2 - 18 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 6.911 ms | 1 - 12 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 13.477 ms | 2 - 41 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 7.549 ms | 1 - 34 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 12.919 ms | 2 - 13 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 6.923 ms | 1 - 11 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 53.658 ms | 19 - 43 MB | NPU | [Segformer-Base.onnx](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.onnx) | |
|
| Segformer-Base | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 8.893 ms | 2 - 49 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 4.626 ms | 1 - 46 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 40.405 ms | 22 - 87 MB | NPU | [Segformer-Base.onnx](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.onnx) | |
|
| Segformer-Base | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 9.077 ms | 2 - 44 MB | NPU | [Segformer-Base.tflite](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.tflite) | |
|
| Segformer-Base | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 3.465 ms | 1 - 40 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 39.888 ms | 21 - 82 MB | NPU | [Segformer-Base.onnx](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.onnx) | |
|
| Segformer-Base | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 7.776 ms | 0 - 0 MB | NPU | [Segformer-Base.dlc](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.dlc) | |
|
| Segformer-Base | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 59.784 ms | 29 - 29 MB | NPU | [Segformer-Base.onnx](https://huggingface.co/qualcomm/Segformer-Base/blob/main/Segformer-Base_w8a8.onnx) | |
|
|
|
|
|
|
|
|
|
## Installation |
|
|
|
|
|
Install the package via pip: |
|
```bash |
|
pip install qai-hub-models |
|
``` |
|
|
|
|
|
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device |
|
|
|
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your |
|
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. |
|
|
|
With this API token, you can configure your client to run models on the cloud |
|
hosted devices. |
|
```bash |
|
qai-hub configure --api_token API_TOKEN |
|
``` |
|
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. |
|
|
|
|
|
|
|
## Demo off target |
|
|
|
The package contains a simple end-to-end demo that downloads pre-trained |
|
weights and runs this model on a sample input. |
|
|
|
```bash |
|
python -m qai_hub_models.models.segformer_base.demo |
|
``` |
|
|
|
The above demo runs a reference implementation of pre-processing, model |
|
inference, and post processing. |
|
|
|
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like |
|
environment, please add the following to your cell (instead of the above). |
|
``` |
|
%run -m qai_hub_models.models.segformer_base.demo |
|
``` |
|
|
|
|
|
### Run model on a cloud-hosted device |
|
|
|
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® |
|
device. This script does the following: |
|
* Performance check on-device on a cloud-hosted device |
|
* Downloads compiled assets that can be deployed on-device for Android. |
|
* Accuracy check between PyTorch and on-device outputs. |
|
|
|
```bash |
|
python -m qai_hub_models.models.segformer_base.export |
|
``` |
|
``` |
|
Profiling Results |
|
------------------------------------------------------------ |
|
Segformer-Base |
|
Device : cs_8275 (ANDROID 14) |
|
Runtime : TFLITE |
|
Estimated inference time (ms) : 218.1 |
|
Estimated peak memory usage (MB): [7, 56] |
|
Total # Ops : 544 |
|
Compute Unit(s) : npu (544 ops) gpu (0 ops) cpu (0 ops) |
|
``` |
|
|
|
|
|
## How does this work? |
|
|
|
This [export script](https://aihub.qualcomm.com/models/segformer_base/qai_hub_models/models/Segformer-Base/export.py) |
|
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model |
|
on-device. Lets go through each step below in detail: |
|
|
|
Step 1: **Compile model for on-device deployment** |
|
|
|
To compile a PyTorch model for on-device deployment, we first trace the model |
|
in memory using the `jit.trace` and then call the `submit_compile_job` API. |
|
|
|
```python |
|
import torch |
|
|
|
import qai_hub as hub |
|
from qai_hub_models.models.segformer_base import Model |
|
|
|
# Load the model |
|
torch_model = Model.from_pretrained() |
|
|
|
# Device |
|
device = hub.Device("Samsung Galaxy S24") |
|
|
|
# Trace model |
|
input_shape = torch_model.get_input_spec() |
|
sample_inputs = torch_model.sample_inputs() |
|
|
|
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) |
|
|
|
# Compile model on a specific device |
|
compile_job = hub.submit_compile_job( |
|
model=pt_model, |
|
device=device, |
|
input_specs=torch_model.get_input_spec(), |
|
) |
|
|
|
# Get target model to run on-device |
|
target_model = compile_job.get_target_model() |
|
|
|
``` |
|
|
|
|
|
Step 2: **Performance profiling on cloud-hosted device** |
|
|
|
After compiling models from step 1. Models can be profiled model on-device using the |
|
`target_model`. Note that this scripts runs the model on a device automatically |
|
provisioned in the cloud. Once the job is submitted, you can navigate to a |
|
provided job URL to view a variety of on-device performance metrics. |
|
```python |
|
profile_job = hub.submit_profile_job( |
|
model=target_model, |
|
device=device, |
|
) |
|
|
|
``` |
|
|
|
Step 3: **Verify on-device accuracy** |
|
|
|
To verify the accuracy of the model on-device, you can run on-device inference |
|
on sample input data on the same cloud hosted device. |
|
```python |
|
input_data = torch_model.sample_inputs() |
|
inference_job = hub.submit_inference_job( |
|
model=target_model, |
|
device=device, |
|
inputs=input_data, |
|
) |
|
on_device_output = inference_job.download_output_data() |
|
|
|
``` |
|
With the output of the model, you can compute like PSNR, relative errors or |
|
spot check the output with expected output. |
|
|
|
**Note**: This on-device profiling and inference requires access to Qualcomm® |
|
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). |
|
|
|
|
|
|
|
## Run demo on a cloud-hosted device |
|
|
|
You can also run the demo on-device. |
|
|
|
```bash |
|
python -m qai_hub_models.models.segformer_base.demo --eval-mode on-device |
|
``` |
|
|
|
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like |
|
environment, please add the following to your cell (instead of the above). |
|
``` |
|
%run -m qai_hub_models.models.segformer_base.demo -- --eval-mode on-device |
|
``` |
|
|
|
|
|
## Deploying compiled model to Android |
|
|
|
|
|
The models can be deployed using multiple runtimes: |
|
- TensorFlow Lite (`.tflite` export): [This |
|
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a |
|
guide to deploy the .tflite model in an Android application. |
|
|
|
|
|
- QNN (`.so` export ): This [sample |
|
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) |
|
provides instructions on how to use the `.so` shared library in an Android application. |
|
|
|
|
|
## View on Qualcomm® AI Hub |
|
Get more details on Segformer-Base's performance across various devices [here](https://aihub.qualcomm.com/models/segformer_base). |
|
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) |
|
|
|
|
|
## License |
|
* The license for the original implementation of Segformer-Base can be found |
|
[here](https://github.com/huggingface/transformers/blob/main/LICENSE). |
|
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) |
|
|
|
|
|
|
|
## References |
|
* [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) |
|
* [Source Model Implementation](https://github.com/huggingface/transformers/tree/main/src/transformers/models/segformer) |
|
|
|
|
|
|
|
## Community |
|
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. |
|
* For questions or feedback please [reach out to us](mailto:[email protected]). |
|
|
|
|
|
|