ratish/bert-textClassification_v1.1

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.2176
  • Validation Loss: 1.4740
  • Train Accuracy: 0.5909
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 95, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
2.2620 2.1136 0.3636 0
1.8161 1.8166 0.3864 1
1.4886 1.6061 0.5909 2
1.2862 1.5037 0.5909 3
1.2176 1.4740 0.5909 4

Framework versions

  • Transformers 4.27.4
  • TensorFlow 2.12.0
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support