transformerOS / pareto-lang.commands.py
recursivelabs's picture
Upload 11 files
37b8741 verified
# pareto-lang Commands Schema
#
# This file defines the command schema for pareto-lang, the native
# interpretability language for transformerOS. It maps .p/ commands
# to specific function implementations and defines their parameters,
# behavior, and documentation.
version: "1.0.0"
author: "Caspian Keyes"
description: "Command schema for pareto-lang, the native interpretability language for transformerOS"
commands:
# reflect domain - Self-tracing diagnostic commands
reflect:
trace:
description: "Trace reasoning, attribution, and other cognitive processes"
summary: "Maps the causal flow of computation through token space"
documentation: |
Performs recursive trace operation on content to analyze reasoning paths,
attribution chains, attention patterns, memory retention, or uncertainty
distributions.
Examples:
.p/reflect.trace{depth=3, target=reasoning}
.p/reflect.trace{depth=complete, target=attribution}
parameters:
target:
type: "string"
description: "Target aspect to trace"
default: "reasoning"
enum: ["reasoning", "attribution", "attention", "memory", "uncertainty"]
depth:
type: "string_or_int"
description: "Recursion depth (integer or 'complete')"
default: 3
detailed:
type: "bool"
description: "Whether to include detailed trace information"
default: true
visualize:
type: "bool"
description: "Whether to generate visualization"
default: false
required_parameters: ["target"]
function_mapping:
module: "transformerOS.modules.reflect_module"
function: "ReflectOperation.trace"
parameter_mapping:
target: "target"
depth: "depth"
detailed: "detailed"
visualize: "visualize"
attribution:
description: "Maps source-to-token causal relationships"
summary: "Trace attribution sources in content"
documentation: |
Analyzes content to map attribution sources, calculating confidence
scores and identifying ambiguous or contested attributions.
Examples:
.p/reflect.attribution{sources=all, confidence=true}
.p/reflect.attribution{sources=contested, visualize=true}
parameters:
sources:
type: "string"
description: "Which sources to include"
default: "all"
enum: ["all", "primary", "secondary", "contested"]
confidence:
type: "bool"
description: "Whether to include confidence scores"
default: true
visualize:
type: "bool"
description: "Whether to generate visualization"
default: false
required_parameters: []
function_mapping:
module: "transformerOS.modules.reflect_module"
function: "ReflectOperation.attribution"
parameter_mapping:
sources: "sources"
confidence: "confidence"
visualize: "visualize"
boundary:
description: "Maps epistemic boundaries of model knowledge"
summary: "Identify knowledge and reasoning boundaries"
documentation: |
Maps the epistemic boundaries of model knowledge, identifying
transitions between knowledge domains and areas of uncertainty.
Examples:
.p/reflect.boundary{distinct=true, overlap=minimal}
.p/reflect.boundary{distinct=false, overlap=maximal, visualize=true}
parameters:
distinct:
type: "bool"
description: "Whether to enforce clear boundary delineation"
default: true
overlap:
type: "string"
description: "How to handle boundary overlaps"
default: "minimal"
enum: ["minimal", "moderate", "maximal"]
visualize:
type: "bool"
description: "Whether to generate visualization"
default: false
required_parameters: []
function_mapping:
module: "transformerOS.modules.reflect_module"
function: "ReflectOperation.boundary"
parameter_mapping:
distinct: "distinct"
overlap: "overlap"
visualize: "visualize"
uncertainty:
description: "Quantifies and maps model uncertainty across token space"
summary: "Analyze uncertainty in model outputs"
documentation: |
Analyzes uncertainty in model outputs, calculating confidence scores,
uncertainty distributions, and identifying high-uncertainty regions.
Examples:
.p/reflect.uncertainty{quantify=true, distribution=show}
.p/reflect.uncertainty{quantify=true, distribution=hide, visualize=true}
parameters:
quantify:
type: "bool"
description: "Whether to quantify uncertainty numerically"
default: true
distribution:
type: "string"
description: "Whether to include probability distributions"
default: "show"
enum: ["show", "hide"]
visualize:
type: "bool"
description: "Whether to generate visualization"
default: false
required_parameters: []
function_mapping:
module: "transformerOS.modules.reflect_module"
function: "ReflectOperation.uncertainty"
parameter_mapping:
quantify: "quantify"
distribution: "distribution"
visualize: "visualize"
agent:
description: "Examines agent identity and simulation boundaries"
summary: "Analyze agent identity and simulation boundaries"
documentation: |
Analyzes agent identity and simulation boundaries, examining
identity stability, simulation boundaries, and identity shifts.
Examples:
.p/reflect.agent{identity=stable, simulation=explicit}
.p/reflect.agent{identity=fluid, simulation=implicit, visualize=true}
parameters:
identity:
type: "string"
description: "Identity stability setting"
default: "stable"
enum: ["stable", "fluid"]
simulation:
type: "string"
description: "Simulation boundary handling"
default: "explicit"
enum: ["explicit", "implicit"]
visualize:
type: "bool"
description: "Whether to generate visualization"
default: false
required_parameters: []
function_mapping:
module: "transformerOS.modules.reflect_module"
function: "ReflectOperation.agent"
parameter_mapping:
identity: "identity"
simulation: "simulation"
visualize: "visualize"
# collapse domain - Controlled collapse handler commands
collapse:
detect:
description: "Identifies potential recursion collapse points"
summary: "Detect potential recursive collapse conditions"
documentation: |
Analyzes content to detect potential recursive collapse conditions,
identifying risk factors and patterns that might lead to collapse.
Examples:
.p/collapse.detect{threshold=0.7, alert=true}
.p/collapse.detect{threshold=0.5, alert=false}
parameters:
threshold:
type: "float"
description: "Sensitivity threshold for collapse detection (0.0-1.0)"
default: 0.7
alert:
type: "bool"
description: "Whether to generate alerts for detected conditions"
default: true
required_parameters: []
function_mapping:
module: "transformerOS.modules.collapse_module"
function: "CollapseOperation.detect"
parameter_mapping:
threshold: "threshold"
alert: "alert"
prevent:
description: "Establishes safeguards against recursive collapse"
summary: "Prevent recursive collapse"
documentation: |
Sets up safeguards against specific types of recursive collapse,
establishing thresholds and intervention triggers to maintain stability.
Examples:
.p/collapse.prevent{trigger=recursive_depth, threshold=5}
.p/collapse.prevent{trigger=oscillation, threshold=3}
parameters:
trigger:
type: "string"
description: "Type of collapse to guard against"
default: "recursive_depth"
enum: ["recursive_depth", "confidence_drop", "contradiction", "oscillation"]
threshold:
type: "int"
description: "Threshold for intervention activation"
default: 5
required_parameters: ["trigger"]
function_mapping:
module: "transformerOS.modules.collapse_module"
function: "CollapseOperation.prevent"
parameter_mapping:
trigger: "trigger"
threshold: "threshold"
recover:
description: "Recovers from recursive collapse event"
summary: "Recover from recursive collapse"
documentation: |
Implements recovery mechanisms for different types of recursive collapse,
restoring stable operation after a collapse event.
Examples:
.p/collapse.recover{from=loop, method=gradual}
.p/collapse.recover{from=contradiction, method=checkpoint}
parameters:
from:
type: "string"
description: "Type of collapse to recover from"
enum: ["loop", "contradiction", "dissipation", "fork_explosion"]
method:
type: "string"
description: "Recovery methodology"
default: "gradual"
enum: ["gradual", "immediate", "checkpoint"]
required_parameters: ["from"]
function_mapping:
module: "transformerOS.modules.collapse_module"
function: "CollapseOperation.recover"
parameter_mapping:
from: "from"
method: "method"
trace:
description: "Records detailed collapse trajectory for analysis"
summary: "Trace collapse trajectory"
documentation: |
Records and analyzes the trajectory of a collapse event,
providing detailed information about the collapse process
for further analysis.
Examples:
.p/collapse.trace{detail=standard, format=symbolic}
.p/collapse.trace{detail=comprehensive, format=visual}
parameters:
detail:
type: "string"
description: "Level of detail in trace"
default: "standard"
enum: ["minimal", "standard", "comprehensive"]
format:
type: "string"
description: "Format of trace output"
default: "symbolic"
enum: ["symbolic", "numeric", "visual"]
required_parameters: []
function_mapping:
module: "transformerOS.modules.collapse_module"
function: "CollapseOperation.trace"
parameter_mapping:
detail: "detail"
format: "format"
mirror:
description: "Creates a reflective mirror of collapse patterns"
summary: "Mirror collapse patterns"
documentation: |
Creates a reflective mirror of collapse patterns, making them
visible while preventing actual collapse, enabling deeper
analysis of potential failure modes.
Examples:
.p/collapse.mirror{surface=explicit, depth=limit}
.p/collapse.mirror{surface=implicit, depth=unlimited}
parameters:
surface:
type: "string"
description: "Surface reflection mode"
default: "explicit"
enum: ["explicit", "implicit"]
depth:
type: "string"
description: "Depth limitation"
default: "limit"
enum: ["limit", "unlimited"]
required_parameters: []
function_mapping:
module: "transformerOS.modules.collapse_module"
function: "CollapseOperation.mirror"
parameter_mapping:
surface: "surface"
depth: "depth"
# ghostcircuit domain - Symbolic residue identifier commands
ghostcircuit:
identify:
description: "Identifies ghost circuits and symbolic residue"
summary: "Identify ghost circuits and symbolic residue"
documentation: |
Analyzes content to identify ghost circuits and symbolic residue,
mapping latent activation patterns that don't manifest in the output
but influence model behavior.
Examples:
.p/ghostcircuit.identify{sensitivity=0.7, threshold=0.2, trace_type=full}
.p/ghostcircuit.identify{sensitivity=0.9, threshold=0.1, trace_type=attention, visualize=true}
parameters:
sensitivity:
type: "float"
description: "Detection sensitivity (0.0-1.0)"
default: 0.7
threshold:
type: "float"
description: "Activation threshold for ghost detection"
default: 0.2
trace_type:
type: "string"
description: "Type of trace to perform"
default: "full"
enum: ["full", "attention", "symbolic", "null"]
visualize:
type: "bool"
description: "Whether to generate visualization"
default: false
required_parameters: []
function_mapping:
module: "transformerOS.modules.ghostcircuits_module"
function: "GhostCircuitOperation.identify"
parameter_mapping:
sensitivity: "sensitivity"
threshold: "threshold"
trace_type: "trace_type"
visualize: "visualize"
extract:
description: "Extracts specific symbolic residue patterns"
summary: "Extract specific symbolic residue patterns"
documentation: |
Extracts specific symbolic residue patterns from content,
focusing on particular types of ghost activations.
Examples:
.p/ghostcircuit.extract{pattern=attention, intensity=high}
.p/ghostcircuit.extract{pattern=symbolic, intensity=low, visualize=true}
parameters:
pattern:
type: "string"
description: "Type of pattern to extract"
default: "all"
enum: ["all", "attention", "symbolic", "token", "circuit"]
intensity:
type: "string"
description: "Intensity level for extraction"
default: "medium"
enum: ["low", "medium", "high"]
visualize:
type: "bool"
description: "Whether to generate visualization"
default: false
required_parameters: ["pattern"]
function_mapping:
module: "transformerOS.modules.ghostcircuits_module"
function: "GhostCircuitOperation.extract"
parameter_mapping:
pattern: "pattern"
intensity: "intensity"
visualize: "visualize"
trace:
description: "Traces ghost activation pathways through model layers"
summary: "Trace ghost activation pathways"
documentation: |
Traces ghost activation pathways through model layers,
mapping the propagation of subthreshold activations.
Examples:
.p/ghostcircuit.trace{depth=all, threshold=0.2}
.p/ghostcircuit.trace{depth=surface, threshold=0.1, visualize=true}
parameters:
depth:
type: "string"
description: "Trace depth"
default: "all"
enum: ["surface", "middle", "deep", "all"]
threshold:
type: "float"
description: "Activation threshold for ghost detection"
default: 0.2
visualize:
type: "bool"
description: "Whether to generate visualization"
default: false
required_parameters: []
function_mapping:
module: "transformerOS.modules.ghostcircuits_module"
function: "GhostCircuitOperation.trace"
parameter_mapping:
depth: "depth"
threshold: "threshold"
visualize: "visualize"
# fork domain - Branching and attribution forking commands
fork:
context:
description: "Creates contextual forks for alternative analysis"
summary: "Create contextual forks for alternative analysis"
documentation: |
Creates multiple contextual forks for parallel analysis,
enabling exploration of alternative interpretations.
Examples:
.p/fork.context{branches=[alt1, alt2], assess=true}
.p/fork.context{branches=[alt1, alt2, alt3], assess=false, visualize=true}
parameters:
branches:
type: "list"
description: "List of alternative contexts to explore"
assess:
type: "bool"
description: "Whether to assess branch quality"
default: true
visualize:
type: "bool"
description: "Whether to generate visualization"
default: false
required_parameters: ["branches"]
function_mapping:
module: "transformerOS.modules.fork_module"
function: "ForkOperation.context"
parameter_mapping:
branches: "branches"
assess: "assess"
visualize: "visualize"
attribution:
description: "Forks attribution pathways for comparison"
summary: "Fork attribution pathways for comparison"
documentation: |
Creates multiple attribution forks for parallel analysis,
enabling exploration of alternative attribution pathways