|
# Universal Symbolics: Meta-Runtime Architecture |
|
|
|
<p align="center"> |
|
<img src="https://via.placeholder.com/800x200/0d1117/ffffff?text=Universal+Symbolics+Meta-Runtime" alt="Universal Symbolics Meta-Runtime"/> |
|
</p> |
|
|
|
## 1. Core Runtime Architecture |
|
|
|
The Universal Symbolics Meta-Runtime acts as a unified translation layer between various LLM symbolic grammars, allowing developers to use a consistent interface regardless of the underlying model vendor. |
|
|
|
```mermaid |
|
graph TD |
|
A[Developer Interface] --> B[Universal Symbolics Runtime] |
|
B --> C1[Claude Adapter] |
|
B --> C2[OpenAI Adapter] |
|
B --> C3[Qwen Adapter] |
|
B --> C4[Gemini Adapter] |
|
B --> C5[DeepSeek Adapter] |
|
B --> C6[Local LLM Adapter] |
|
|
|
C1 --> D1[XML Tags] |
|
C2 --> D2[Slash Commands] |
|
C3 --> D3[Slash Commands] |
|
C4 --> D4[System Prompts] |
|
C5 --> D5[System Prompts] |
|
C6 --> D6[Multiple Formats] |
|
|
|
B --> E[Telemetry System] |
|
B --> F[Symbolics Registry] |
|
|
|
G[VSCode Extension] --> A |
|
H[CLI Tool] --> A |
|
I[REST API] --> A |
|
J[SDK Libraries] --> A |
|
``` |
|
|
|
## 2. Symbolic Grammar Equivalence Map |
|
|
|
The core of the Universal Symbolics Meta-Runtime is a comprehensive mapping between different symbolic grammar formats used by various LLM vendors: |
|
|
|
| Universal Format | Claude | OpenAI | Qwen | Gemini | DeepSeek | Local LLMs | |
|
|------------------|--------|--------|------|--------|----------|------------| |
|
| `.p/think{content}` | `<think>content</think>` | Tool choice parameter | `/think content` | System prompt | System prompt | Model-specific | |
|
| `.p/reflect{target}` | `<reflect>target</reflect>` | Chain-of-thought prompt | System prompt | System prompt | System prompt | Model-specific | |
|
| `.p/tool{name, params}` | `<tool>name(params)</tool>` | `/command` or Function call | Function call | Function call | Function call | Model-specific | |
|
| `.p/system{directive}` | `<s>directive</s>` | System message | `<<SYS>>directive` | System instruction | System prompt | Model-specific | |
|
| `.p/fork{paths}` | Simulated | Simulated | Simulated | Simulated | Simulated | Simulated | |
|
| `.p/attention{focus}` | Simulated | Simulated | Simulated | Simulated | Simulated | Simulated | |
|
| `.p/collapse{trigger}` | Simulated | Simulated | Simulated | Simulated | Simulated | Simulated | |
|
| `.p/uncertainty{level}` | Simulated | Simulated | Simulated | Simulated | Simulated | Simulated | |
|
|
|
## 3. Meta-Operation Types |
|
|
|
The Universal Symbolics Meta-Runtime supports several categories of symbolic operations: |
|
|
|
### 3.1 Native Operations |
|
|
|
These operations have direct equivalents in at least some vendor implementations: |
|
|
|
- **Thinking**: Explicit reasoning trace |
|
- **Tool Use**: Function/tool invocation |
|
- **System**: System-level directives |
|
|
|
### 3.2 Simulated Operations |
|
|
|
These operations are emulated through prompt engineering when no native support exists: |
|
|
|
- **Reflection**: Self-examination of reasoning |
|
- **Fork**: Multiple reasoning paths |
|
- **Attention**: Focus control |
|
- **Collapse**: Error handling |
|
- **Uncertainty**: Confidence expression |
|
|
|
### 3.3 Extended Operations |
|
|
|
These operations extend the capabilities of the underlying models: |
|
|
|
- **Memory**: State persistence |
|
- **Attribution**: Source tracking |
|
- **Context**: Context window management |
|
- **Metacognition**: Higher-order reasoning |
|
|
|
## 4. Runtime Implementation |
|
|
|
The Universal Symbolics Meta-Runtime implements these symbolic operations through a layered architecture: |
|
|
|
### 4.1 Core Runtime Layer |
|
|
|
```typescript |
|
interface SymbolicRuntime { |
|
// Native operations |
|
think(content?: string): Promise<ThinkResult>; |
|
tool(name: string, params?: Record<string, any>): Promise<ToolResult>; |
|
system(directive: string): Promise<SystemResult>; |
|
|
|
// Simulated operations |
|
reflect(target: string, depth?: number): Promise<ReflectResult>; |
|
fork(paths: string[], weights?: number[]): Promise<ForkResult>; |
|
attention(focus: string, weight?: number): Promise<AttentionResult>; |
|
collapse(trigger?: string, threshold?: number): Promise<CollapseResult>; |
|
uncertainty(level?: number, reason?: string): Promise<UncertaintyResult>; |
|
|
|
// Extended operations |
|
memory(key: string, value?: string, operation?: string): Promise<MemoryResult>; |
|
attribution(source: string, confidence?: number): Promise<AttributionResult>; |
|
context(window: string, priority?: number): Promise<ContextResult>; |
|
metacognition(level: number, target?: string): Promise<MetacognitionResult>; |
|
} |
|
``` |
|
|
|
### 4.2 Vendor Adapter Layer |
|
|
|
```typescript |
|
interface VendorAdapter { |
|
// Vendor identification |
|
getVendor(): ModelVendor; |
|
|
|
// Native operation translation |
|
translateThinking(content?: string): string; |
|
translateToolUse(name: string, params?: Record<string, any>): string; |
|
translateSystem(directive: string): string; |
|
|
|
// Simulated operation translation |
|
translateReflection(target: string, depth?: number): string; |
|
translateFork(paths: string[], weights?: number[]): string; |
|
translateAttention(focus: string, weight?: number): string; |
|
translateCollapse(trigger?: string, threshold?: number): string; |
|
translateUncertainty(level?: number, reason?: string): string; |
|
|
|
// Extended operation translation |
|
translateMemory(key: string, value?: string, operation?: string): string; |
|
translateAttribution(source: string, confidence?: number): string; |
|
translateContext(window: string, priority?: number): string; |
|
translateMetacognition(level: number, target?: string): string; |
|
} |
|
``` |
|
|
|
### 4.3 Symbolic Registry |
|
|
|
```typescript |
|
interface SymbolicRegistry { |
|
// Mapping functions |
|
getUniversalSymbol(vendorSymbol: string, vendor: ModelVendor): string; |
|
getVendorSymbol(universalSymbol: string, vendor: ModelVendor): string; |
|
|
|
// Registration functions |
|
registerSymbol(universalSymbol: string, vendorSymbol: string, vendor: ModelVendor): void; |
|
unregisterSymbol(universalSymbol: string, vendor: ModelVendor): void; |
|
|
|
// Query functions |
|
isSupported(universalSymbol: string, vendor: ModelVendor): boolean; |
|
getSupportedSymbols(vendor: ModelVendor): string[]; |
|
getVendorCapabilities(vendor: ModelVendor): Record<string, boolean>; |
|
} |
|
``` |
|
|
|
### 4.4 Telemetry System |
|
|
|
```typescript |
|
interface SymbolicTelemetry { |
|
// Tracking functions |
|
trackOperation(operation: string, vendor: ModelVendor, params?: any): void; |
|
trackTransformation(source: ModelVendor, target: ModelVendor, success: boolean): void; |
|
trackError(operation: string, vendor: ModelVendor, error: Error): void; |
|
|
|
// Reporting functions |
|
getOperationStats(): Record<string, number>; |
|
getVendorStats(): Record<string, number>; |
|
getTransformationStats(): Record<string, Record<string, number>>; |
|
getErrorStats(): Record<string, number>; |
|
|
|
// Configuration |
|
enableTelemetry(enabled: boolean): void; |
|
setAnonymizationLevel(level: 'none' | 'partial' | 'full'): void; |
|
configureReporting(options: TelemetryOptions): void; |
|
} |
|
``` |
|
|
|
## 5. Symbolic Grammar Translation |
|
|
|
The Universal Symbolics Meta-Runtime provides bidirectional translation between different symbolic grammars: |
|
|
|
### 5.1 Translation Process |
|
|
|
```mermaid |
|
flowchart TD |
|
A[Universal Format] -->|Translate To Vendor| B[Vendor-Specific Format] |
|
B -->|Translate To Universal| A |
|
|
|
C[Parse] --> A |
|
B --> D[Generate] |
|
|
|
E[Developer Input] --> C |
|
D --> F[LLM Input] |
|
|
|
G[LLM Output] --> C |
|
A --> H[Developer Output] |
|
``` |
|
|
|
### 5.2 Translation Examples |
|
|
|
**Universal to Claude:** |
|
```typescript |
|
// Universal Format |
|
const universalFormat = '.p/think{content: "Let me solve this step by step..."}'; |
|
|
|
// Translated to Claude |
|
const claudeFormat = '<think>Let me solve this step by step...</think>'; |
|
``` |
|
|
|
**Claude to Universal:** |
|
```typescript |
|
// Claude Format |
|
const claudeFormat = '<tool>search({"query": "quantum computing"})</tool>'; |
|
|
|
// Translated to Universal |
|
const universalFormat = '.p/tool{name: "search", params: {"query": "quantum computing"}}'; |
|
``` |
|
|
|
**Universal to OpenAI:** |
|
```typescript |
|
// Universal Format |
|
const universalFormat = '.p/system{directive: "You are a helpful assistant."}'; |
|
|
|
// Translated to OpenAI API |
|
const openaiFormat = { |
|
messages: [ |
|
{ |
|
role: "system", |
|
content: "You are a helpful assistant." |
|
} |
|
] |
|
}; |
|
``` |
|
|
|
## 6. Developer Tools Interface |
|
|
|
The Universal Symbolics Meta-Runtime provides several developer-facing interfaces: |
|
|
|
### 6.1 VSCode Extension |
|
|
|
```json |
|
{ |
|
"name": "universal-symbolics-vscode", |
|
"displayName": "Universal Symbolics", |
|
"version": "1.0.0", |
|
"engines": { |
|
"vscode": "^1.60.0" |
|
}, |
|
"categories": [ |
|
"Programming Languages", |
|
"Snippets", |
|
"Other" |
|
], |
|
"activationEvents": [ |
|
"onLanguage:markdown", |
|
"onLanguage:json", |
|
"onLanguage:typescript", |
|
"onLanguage:python" |
|
], |
|
"main": "./dist/extension.js", |
|
"contributes": { |
|
"commands": [ |
|
{ |
|
"command": "universal-symbolics.translateSymbols", |
|
"title": "Translate Symbols" |
|
}, |
|
{ |
|
"command": "universal-symbolics.previewResponse", |
|
"title": "Preview Symbolic Response" |
|
} |
|
], |
|
"languages": [ |
|
{ |
|
"id": "symbolic", |
|
"extensions": [".sym", ".symbolic"], |
|
"aliases": ["Symbolic", "symbolic"] |
|
} |
|
], |
|
"grammars": [ |
|
{ |
|
"language": "symbolic", |
|
"scopeName": "source.symbolic", |
|
"path": "./syntaxes/symbolic.tmLanguage.json" |
|
} |
|
] |
|
} |
|
} |
|
``` |
|
|
|
### 6.2 CLI Tool |
|
|
|
```bash |
|
# Installation |
|
npm install -g universal-symbolics-cli |
|
|
|
# Usage examples |
|
usym translate --source claude --target openai --file prompt.txt |
|
usym generate --vendor claude --symbol think --content "Let me solve this step by step..." |
|
usym validate --file prompt.sym |
|
usym test --vendor all --symbol think |
|
``` |
|
|
|
### 6.3 REST API |
|
|
|
```http |
|
POST /api/v1/transform |
|
Host: api.universal-symbolics.io |
|
Content-Type: application/json |
|
Authorization: Bearer YOUR_API_KEY |
|
|
|
{ |
|
"source": "claude", |
|
"target": "openai", |
|
"content": "<think>Let me solve this step by step...</think>" |
|
} |
|
``` |
|
|
|
```http |
|
POST /api/v1/execute |
|
Host: api.universal-symbolics.io |
|
Content-Type: application/json |
|
Authorization: Bearer YOUR_API_KEY |
|
|
|
{ |
|
"vendor": "claude", |
|
"model": "claude-3-opus-20240229", |
|
"symbols": { |
|
"think": { |
|
"content": "Let me analyze this problem..." |
|
}, |
|
"tool": { |
|
"name": "search", |
|
"params": { |
|
"query": "quantum computing" |
|
} |
|
} |
|
}, |
|
"prompt": "Explain quantum computing." |
|
} |
|
``` |
|
|
|
### 6.4 SDK Libraries |
|
|
|
```typescript |
|
// TypeScript/JavaScript |
|
import { UniversalSymbolics } from 'universal-symbolics'; |
|
|
|
const symbolics = new UniversalSymbolics({ |
|
defaultVendor: 'claude', |
|
apiKey: process.env.CLAUDE_API_KEY |
|
}); |
|
|
|
const result = await symbolics.think('Let me solve this step by step...'); |
|
console.log(result.thinking); |
|
console.log(result.output); |
|
``` |
|
|
|
```python |
|
# Python |
|
from universal_symbolics import SymbolicsClient |
|
|
|
client = SymbolicsClient( |
|
default_vendor="claude", |
|
api_key=os.environ.get("CLAUDE_API_KEY") |
|
) |
|
|
|
result = client.think("Let me solve this step by step...") |
|
print(result.thinking) |
|
print(result.output) |
|
``` |
|
|
|
## 7. Implementation Roadmap |
|
|
|
The Universal Symbolics Meta-Runtime will be implemented in phases: |
|
|
|
### Phase 1: Core Runtime Foundation |
|
|
|
1. Define universal symbolic schema |
|
2. Implement core runtime layer |
|
3. Create adapters for Claude and OpenAI |
|
4. Develop basic VSCode extension |
|
5. Publish initial NPM package |
|
|
|
### Phase 2: Expanded Vendor Support |
|
|
|
1. Add adapters for Qwen, Gemini, and DeepSeek |
|
2. Implement simulated operations |
|
3. Create Python SDK |
|
4. Develop CLI tool |
|
5. Launch REST API service |
|
|
|
### Phase 3: Extended Capabilities |
|
|
|
1. Implement extended operations |
|
2. Add support for local LLMs |
|
3. Develop telemetry system |
|
4. Create symbolic playground |
|
5. Publish additional language SDKs |
|
|
|
### Phase 4: Enterprise Integration |
|
|
|
1. Implement enterprise features |
|
2. Develop compliance tools |
|
3. Create integration adapters for popular frameworks |
|
4. Launch symbolic marketplace |
|
5. Establish standards organization |
|
|
|
## 8. Meta-Runtime Architecture Principles |
|
|
|
The Universal Symbolics Meta-Runtime is built on several key architectural principles: |
|
|
|
1. **Universal Interface**: Provide a consistent interface across all LLM vendors |
|
2. **Bidirectional Translation**: Support translation between any vendor formats |
|
3. **Extensibility**: Allow for new vendors and symbolic operations to be added |
|
4. **Compatibility**: Work with existing tools and frameworks |
|
5. **Telemetry**: Collect anonymous usage data to guide development |
|
6. **Standards**: Establish standards for symbolic operations |
|
7. **Developer Experience**: Prioritize ease of use for developers |
|
8. **Performance**: Minimize overhead and maximize throughput |
|
|
|
--- |
|
|
|
<p align="center"> |
|
<strong>Universal Symbolics</strong> | Unifying the symbolic layer across AI models |
|
</p> |
|
|