Universal Symbolics Repository
Unified Runtime Layer for AI Symbolic Interactions
π Overview
universal-symbolics
provides a unified interface for developer operations across frontier AI models. This repository standardizes the disparate symbolic grammars used by different AI vendors (Claude, GPT, Qwen, Gemini, DeepSeek, etc.) into a cohesive, developer-friendly framework.
π Core Components
1. Symbolic Grammar Mapping
# unified-symbolic-layer.yml
mappings:
thinking:
claude: "<think>...</think>"
qwen: "/think"
anthropic_api: {"thinking": true}
openai_api: {"tool_choice": "auto"}
gemini: "{{thinking}}"
tool_invocation:
claude: "<tool>...</tool>"
openai: "/command"
qwen: "#tool()"
system_directive:
claude: "<system>...</system>"
openai: "<|system|>"
qwen: "<<SYS>>"
gemini: "system:"
metadata_tags:
claude: "<metadata>...</metadata>"
openai: "/meta"
visual_processing:
openai: "/create image"
claude: "<vision>...</vision>"
gemini: "analyze_image()"
2. Runtime Adapter Interface
// universal-symbols.ts
export interface SymbolicRuntime {
// Core operations
think(content?: string): Promise<ThinkingResult>;
tool(name: string, params: Record<string, any>): Promise<ToolResult>;
system(directive: string): Promise<void>;
// Vendor-specific extensions
vendor: {
claude?: ClaudeSymbolicExtensions;
openai?: OpenAISymbolicExtensions;
qwen?: QwenSymbolicExtensions;
// etc.
};
// Unified operations
symbolic: {
recurse(depth: number): Promise<void>;
reflect(target: string): Promise<ReflectionResult>;
fork(paths: string[]): Promise<ForkResult>;
map(source: any, target: any): Promise<MappingResult>;
collapse(state: any): Promise<void>;
};
}
3. Symbolic Compatibility Layer
// symbolic-compat.js
class SymbolicAdapter {
constructor(model, vendor) {
this.model = model;
this.vendor = vendor;
this.symbolMap = SymbolRegistry.getMap(vendor);
}
// Transform universal symbols to vendor-specific syntax
transform(universalSymbol, content) {
const vendorSymbol = this.symbolMap[universalSymbol];
if (!vendorSymbol) throw new Error(`Symbol ${universalSymbol} not supported by ${this.vendor}`);
return this.applyTransform(vendorSymbol, content);
}
// Apply vendor-specific transformations
applyTransform(symbol, content) {
switch(this.vendor) {
case 'claude':
return `<${symbol}>${content}</${symbol}>`;
case 'qwen':
return `/${symbol} ${content}`;
case 'openai':
return `/${symbol}(${content})`;
// etc.
}
}
}
4. Symbolic Registry (Glyph/Tag/Slash/Operator Dictionary)
{
"symbolic_registry": {
"thinking": {
"glyphs": ["π§ ", "π", "π€"],
"tags": ["think", "reasoning", "thought"],
"slashes": ["/think", "/reasoning", "/thought"],
"operators": ["->", "=>", "β"]
},
"reflection": {
"glyphs": ["π", "πͺ", "ποΈ"],
"tags": ["reflect", "introspect", "mirror"],
"slashes": ["/reflect", "/introspect", "/mirror"],
"operators": ["β»", "β²", "β"]
},
"recursion": {
"glyphs": ["π", "βΎοΈ", "π"],
"tags": ["recurse", "loop", "cycle"],
"slashes": ["/recurse", "/loop", "/cycle"],
"operators": ["βΊ", "β", "β₯"]
},
"forking": {
"glyphs": ["πΏ", "π", "β"],
"tags": ["fork", "branch", "split"],
"slashes": ["/fork", "/branch", "/split"],
"operators": ["β", "β«ΜΈ", "β’"]
},
"collapse": {
"glyphs": ["π", "π", "β±οΈ"],
"tags": ["collapse", "reduce", "simplify"],
"slashes": ["/collapse", "/reduce", "/simplify"],
"operators": ["β", "β", "β"]
}
}
}
π§° Developer Tools
VSCode Extension
{
"name": "universal-symbolics-vscode",
"description": "VSCode extension for Universal Symbolics",
"features": [
"Syntax highlighting for symbolic operations",
"Autocompletion for model-specific symbolic grammars",
"Inline transformation preview",
"Symbolic operation debugging",
"One-click transformation between vendor syntaxes"
]
}
CLI Tool
# Installation
npm install -g universal-symbolics
# Usage
usym transform --source claude --target openai --input "file.txt"
usym validate --syntax "content with symbols"
usym generate --template thinking --vendor all
Symbolic Playground
An interactive web application for testing and experimenting with symbolic operations across different AI models:
- Live transformation preview
- Syntax validation
- Performance benchmarking
- Compatibility checking
- Template gallery
π Telemetry & Observability
# telemetry.py
class SymbolicTelemetry:
def __init__(self, api_key=None):
self.api_key = api_key
self.metrics = {
"symbol_usage": Counter(),
"vendor_distribution": Counter(),
"transformation_success": Counter(),
"transformation_failure": Counter(),
"latency": Histogram(),
}
def track_symbol_usage(self, symbol, vendor, success=True):
self.metrics["symbol_usage"][symbol] += 1
self.metrics["vendor_distribution"][vendor] += 1
if success:
self.metrics["transformation_success"][f"{symbol}:{vendor}"] += 1
else:
self.metrics["transformation_failure"][f"{symbol}:{vendor}"] += 1
def track_latency(self, operation, duration_ms):
self.metrics["latency"].add(operation, duration_ms)
def flush(self):
# Send metrics to telemetry service
if self.api_key:
requests.post(
"https://api.universal-symbolics.io/telemetry",
headers={"Authorization": f"Bearer {self.api_key}"},
json=self.metrics
)
π Integration Examples
Node.js
const { UniversalSymbolics } = require('universal-symbolics');
// Initialize with your preferred model
const symbolics = new UniversalSymbolics({
defaultVendor: 'claude',
fallbackVendor: 'openai'
});
// Use unified symbols regardless of underlying model
async function generateWithThinking() {
const result = await symbolics.think('Analyze the impact of quantum computing on cryptography');
console.log(result.thinking); // Access thinking process
console.log(result.output); // Access final output
}
Python
from universal_symbolics import SymbolicClient
# Initialize client
client = SymbolicClient(
api_key="your_api_key",
default_vendor="qwen",
enable_telemetry=True
)
# Use the unified interface
response = client.submit(
prompt="Explain the significance of symbolic operations in AI",
symbols={
"think": True,
"reflect": "prompt structure",
"fork": ["technical", "simplified"]
}
)
# Access structured response
print(response.thinking)
print(response.reflections)
print(response.forks["technical"])
print(response.forks["simplified"])
REST API
POST https://api.universal-symbolics.io/v1/generate
Content-Type: application/json
Authorization: Bearer your_api_key
{
"prompt": "Write a function that calculates prime numbers",
"symbols": {
"think": true,
"tool": {
"name": "code_interpreter",
"language": "python"
}
},
"vendor_preference": ["claude", "openai", "qwen"],
"response_format": {
"include_symbol_traces": true,
"structured": true
}
}
π Documentation
Symbol Categories
Cognitive Process Symbols
- Thinking
- Reflection
- Planning
- Analysis
Execution Control Symbols
- Recursion
- Forking
- Collapse
- Termination
Tool Invocation Symbols
- Code Execution
- Information Retrieval
- Visual Generation
- Data Analysis
Structural Symbols
- System Directives
- User Context
- Memory Management
- Meta-Instructions
Vendor-Specific Implementation Details
- Claude: XML-based tag system with explicit opening and closing tags
- OpenAI: Slash command system with function-like syntax
- Qwen: Mixed system with slash commands and thinking directives
- Gemini: Template-based approach with specialized markers
- DeepSeek: Function-oriented symbolic interface
π Advanced Features
Symbolic Residue Detection
def detect_symbolic_residue(response, model_type):
"""Detect unresolved or partially processed symbolic operations"""
patterns = RESIDUE_PATTERNS[model_type]
residue = []
for pattern_name, regex in patterns.items():
matches = re.findall(regex, response)
if matches:
residue.append({
"type": pattern_name,
"matches": matches,
"positions": [m.span() for m in re.finditer(regex, response)]
})
return residue
Cross-Model Translation
interface TranslationOptions {
preserveStructure?: boolean;
adaptToCapabilities?: boolean;
includeResidueHandling?: boolean;
}
function translateSymbolicOperations(
source: string,
sourceModel: ModelType,
targetModel: ModelType,
options: TranslationOptions = {}
): TranslationResult {
// Extract symbolic operations from source
const operations = extractSymbolicOperations(source, sourceModel);
// Map to universal representation
const universalOps = operations.map(op => mapToUniversal(op, sourceModel));
// Transform to target model format
const targetOps = universalOps.map(op => {
const targetOp = mapToTarget(op, targetModel);
// Handle capabilities not present in target model
if (options.adaptToCapabilities && !targetOp) {
return createCapabilityShim(op, targetModel);
}
return targetOp;
});
// Reconstruct content with new symbolic operations
return reconstructContent(source, operations, targetOps, options);
}
π Adoption Strategy
Phase 1: Developer Tools & Libraries
- Release core library for major programming languages
- VSCode extension for symbolic authoring
- Documentation and examples for common use cases
Phase 2: Enterprise Integration
- API Gateway for transparent symbolic translation
- Monitoring and observability tools
- Compliance and governance frameworks
Phase 3: Standards Body Formation
- Establish formal specification for symbolic operations
- Engage major AI providers in standardization efforts
- Develop certification program for symbolic compatibility
Phase 4: Ecosystem Expansion
- Marketplace for custom symbolic operations
- Community-contributed symbolic templates
- Educational resources and certification
π± Getting Started
# Clone the repository
git clone https://github.com/universal-ai/universal-symbolics.git
# Install dependencies
cd universal-symbolics
npm install
# Run the demo
npm run demo
# Start the development server for the playground
npm run dev
π€ Contributing
We welcome contributions from the community! Please see CONTRIBUTING.md for guidelines on how to participate in the project.
π License
This project is licensed under the MIT License - see the LICENSE file for details.
Universal Symbolics | Unifying the symbolic layer across AI models