File size: 2,243 Bytes
73741e1
8fb6e29
 
 
 
 
 
 
 
 
 
 
 
73741e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb6e29
94ba471
 
88af4ea
94ba471
e0f5987
 
 
 
3122625
73741e1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: mit
library_name: pytorch
tags:
  - deep-learning
  - genomics
  - dna-sequence
  - dna-shape
  - transcription-factor
  - histone-marks
  - DNase
  - regulatory-elements

model-index:
  - name: DeepShape
    results:
      - task:
          name: TF/DNase/Histone Binding Prediction
          type: binary-classification
        dataset:
          name: ENCODE + Roadmap Epigenomics (919 targets)
          type: genomics
          split: "held-out chromosomes (validation: chr6/7, test: chr8/9)"
        metrics:
          - name: AUROC (TF)
            type: auc
            value: 0.948
          - name: AUPRC (TF)
            type: average precision
            value: 0.353
          - name: AUROC (DNase)
            type: auc
            value: 0.907
          - name: AUPRC (DNase)
            type: average precision
            value: 0.472
          - name: AUROC (Histone)
            type: auc
            value: 0.850
          - name: AUPRC (Histone)
            type: average precision
            value: 0.367
---


# DeepShape

![DeepShape Model](https://cdn-uploads.huggingface.co/production/uploads/673aba065a7a527280b46d42/GkOXCl7rm87SWMUm1HjgB.png)

DeepShape is a deep convolutional neural network designed to predict molecular phenotypes from DNA sequences. Unlike traditional models that rely solely on one-hot encoded DNA sequences, DeepShape integrates DNA structural attributes indicative of local shape: minor groove width (MGW), helical twist (HelT), propeller twist (ProT), roll, and electrostatic potential (EP). This combination enhances the interpretability of the model and helps identify regulatory patterns that are not apparent from sequence information alone.

DeepShape is built upon DeeperDeepSEA, a PyTorch-based deep learning model originally designed to predict chromatin features from DNA sequence alone as implemented in [Selene](https://www.nature.com/articles/s41592-019-0360-8).

https://github.com/ni-lab/DeepShape

## License

DeepShape is licensed under the MIT License. Portions of this software are derived from [Selene](https://www.nature.com/articles/s41592-019-0360-8), which is licensed under the Clear BSD License.  
See the [LICENSE](./LICENSE) file for full details.