dropoff-utcustom-train-SF-RGBD-b0_4

This model is a fine-tuned version of nvidia/mit-b0 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3688
  • Mean Iou: 0.3485
  • Mean Accuracy: 0.5433
  • Overall Accuracy: 0.9606
  • Accuracy Unlabeled: nan
  • Accuracy Dropoff: 0.0881
  • Accuracy Undropoff: 0.9984
  • Iou Unlabeled: 0.0
  • Iou Dropoff: 0.0851
  • Iou Undropoff: 0.9604

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 120

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Dropoff Accuracy Undropoff Iou Unlabeled Iou Dropoff Iou Undropoff
1.2008 5.0 10 1.0960 0.1205 0.4461 0.2825 nan 0.6246 0.2677 0.0 0.0943 0.2671
1.0485 10.0 20 1.0952 0.1603 0.6272 0.4049 nan 0.8696 0.3848 0.0 0.0965 0.3843
0.9156 15.0 30 1.0312 0.3080 0.5963 0.8333 nan 0.3377 0.8548 0.0 0.0924 0.8317
0.7435 20.0 40 0.9448 0.3221 0.5508 0.8937 nan 0.1769 0.9248 0.0 0.0733 0.8930
0.7336 25.0 50 0.7446 0.3191 0.4998 0.9461 nan 0.0129 0.9866 0.0 0.0113 0.9461
0.6585 30.0 60 0.6397 0.3183 0.4981 0.9534 nan 0.0014 0.9948 0.0 0.0013 0.9534
0.583 35.0 70 0.5785 0.3181 0.4978 0.9537 nan 0.0006 0.9951 0.0 0.0005 0.9537
0.5324 40.0 80 0.5458 0.3182 0.4980 0.9545 nan 0.0002 0.9958 0.0 0.0002 0.9545
0.5155 45.0 90 0.5347 0.3186 0.4987 0.9558 nan 0.0001 0.9973 0.0 0.0001 0.9558
0.4874 50.0 100 0.4954 0.3179 0.4976 0.9537 nan 0.0 0.9951 0.0 0.0 0.9537
0.4716 55.0 110 0.4646 0.3185 0.4985 0.9555 nan 0.0 0.9969 0.0 0.0 0.9555
0.4441 60.0 120 0.4426 0.3185 0.4985 0.9555 nan 0.0 0.9970 0.0 0.0 0.9555
0.4659 65.0 130 0.4345 0.3189 0.4991 0.9567 nan 0.0 0.9982 0.0 0.0 0.9567
0.4758 70.0 140 0.4221 0.3181 0.4978 0.9543 nan 0.0 0.9957 0.0 0.0 0.9543
0.4208 75.0 150 0.4029 0.3190 0.4993 0.9571 nan 0.0 0.9987 0.0 0.0 0.9571
0.4395 80.0 160 0.4170 0.3207 0.5016 0.9559 nan 0.0062 0.9971 0.0 0.0062 0.9559
0.3981 85.0 170 0.3992 0.3214 0.5027 0.9574 nan 0.0067 0.9987 0.0 0.0066 0.9574
0.3983 90.0 180 0.3965 0.3282 0.5125 0.9560 nan 0.0288 0.9963 0.0 0.0285 0.9560
0.398 95.0 190 0.3747 0.3272 0.5112 0.9569 nan 0.0251 0.9973 0.0 0.0249 0.9568
0.3767 100.0 200 0.3722 0.3301 0.5155 0.9574 nan 0.0336 0.9975 0.0 0.0330 0.9573
0.3797 105.0 210 0.3781 0.3334 0.5204 0.9583 nan 0.0429 0.9980 0.0 0.0420 0.9582
0.373 110.0 220 0.3744 0.3409 0.5317 0.9593 nan 0.0654 0.9980 0.0 0.0636 0.9591
0.372 115.0 230 0.3700 0.3440 0.5364 0.9599 nan 0.0746 0.9983 0.0 0.0723 0.9598
0.3629 120.0 240 0.3688 0.3485 0.5433 0.9606 nan 0.0881 0.9984 0.0 0.0851 0.9604

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support