dropoff-utcustom-train-SF-RGBD-b0_4
This model is a fine-tuned version of nvidia/mit-b0 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:
- Loss: 0.3688
- Mean Iou: 0.3485
- Mean Accuracy: 0.5433
- Overall Accuracy: 0.9606
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.0881
- Accuracy Undropoff: 0.9984
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.0851
- Iou Undropoff: 0.9604
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.2008 | 5.0 | 10 | 1.0960 | 0.1205 | 0.4461 | 0.2825 | nan | 0.6246 | 0.2677 | 0.0 | 0.0943 | 0.2671 |
1.0485 | 10.0 | 20 | 1.0952 | 0.1603 | 0.6272 | 0.4049 | nan | 0.8696 | 0.3848 | 0.0 | 0.0965 | 0.3843 |
0.9156 | 15.0 | 30 | 1.0312 | 0.3080 | 0.5963 | 0.8333 | nan | 0.3377 | 0.8548 | 0.0 | 0.0924 | 0.8317 |
0.7435 | 20.0 | 40 | 0.9448 | 0.3221 | 0.5508 | 0.8937 | nan | 0.1769 | 0.9248 | 0.0 | 0.0733 | 0.8930 |
0.7336 | 25.0 | 50 | 0.7446 | 0.3191 | 0.4998 | 0.9461 | nan | 0.0129 | 0.9866 | 0.0 | 0.0113 | 0.9461 |
0.6585 | 30.0 | 60 | 0.6397 | 0.3183 | 0.4981 | 0.9534 | nan | 0.0014 | 0.9948 | 0.0 | 0.0013 | 0.9534 |
0.583 | 35.0 | 70 | 0.5785 | 0.3181 | 0.4978 | 0.9537 | nan | 0.0006 | 0.9951 | 0.0 | 0.0005 | 0.9537 |
0.5324 | 40.0 | 80 | 0.5458 | 0.3182 | 0.4980 | 0.9545 | nan | 0.0002 | 0.9958 | 0.0 | 0.0002 | 0.9545 |
0.5155 | 45.0 | 90 | 0.5347 | 0.3186 | 0.4987 | 0.9558 | nan | 0.0001 | 0.9973 | 0.0 | 0.0001 | 0.9558 |
0.4874 | 50.0 | 100 | 0.4954 | 0.3179 | 0.4976 | 0.9537 | nan | 0.0 | 0.9951 | 0.0 | 0.0 | 0.9537 |
0.4716 | 55.0 | 110 | 0.4646 | 0.3185 | 0.4985 | 0.9555 | nan | 0.0 | 0.9969 | 0.0 | 0.0 | 0.9555 |
0.4441 | 60.0 | 120 | 0.4426 | 0.3185 | 0.4985 | 0.9555 | nan | 0.0 | 0.9970 | 0.0 | 0.0 | 0.9555 |
0.4659 | 65.0 | 130 | 0.4345 | 0.3189 | 0.4991 | 0.9567 | nan | 0.0 | 0.9982 | 0.0 | 0.0 | 0.9567 |
0.4758 | 70.0 | 140 | 0.4221 | 0.3181 | 0.4978 | 0.9543 | nan | 0.0 | 0.9957 | 0.0 | 0.0 | 0.9543 |
0.4208 | 75.0 | 150 | 0.4029 | 0.3190 | 0.4993 | 0.9571 | nan | 0.0 | 0.9987 | 0.0 | 0.0 | 0.9571 |
0.4395 | 80.0 | 160 | 0.4170 | 0.3207 | 0.5016 | 0.9559 | nan | 0.0062 | 0.9971 | 0.0 | 0.0062 | 0.9559 |
0.3981 | 85.0 | 170 | 0.3992 | 0.3214 | 0.5027 | 0.9574 | nan | 0.0067 | 0.9987 | 0.0 | 0.0066 | 0.9574 |
0.3983 | 90.0 | 180 | 0.3965 | 0.3282 | 0.5125 | 0.9560 | nan | 0.0288 | 0.9963 | 0.0 | 0.0285 | 0.9560 |
0.398 | 95.0 | 190 | 0.3747 | 0.3272 | 0.5112 | 0.9569 | nan | 0.0251 | 0.9973 | 0.0 | 0.0249 | 0.9568 |
0.3767 | 100.0 | 200 | 0.3722 | 0.3301 | 0.5155 | 0.9574 | nan | 0.0336 | 0.9975 | 0.0 | 0.0330 | 0.9573 |
0.3797 | 105.0 | 210 | 0.3781 | 0.3334 | 0.5204 | 0.9583 | nan | 0.0429 | 0.9980 | 0.0 | 0.0420 | 0.9582 |
0.373 | 110.0 | 220 | 0.3744 | 0.3409 | 0.5317 | 0.9593 | nan | 0.0654 | 0.9980 | 0.0 | 0.0636 | 0.9591 |
0.372 | 115.0 | 230 | 0.3700 | 0.3440 | 0.5364 | 0.9599 | nan | 0.0746 | 0.9983 | 0.0 | 0.0723 | 0.9598 |
0.3629 | 120.0 | 240 | 0.3688 | 0.3485 | 0.5433 | 0.9606 | nan | 0.0881 | 0.9984 | 0.0 | 0.0851 | 0.9604 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support