OKAI-midi-gen-v-001

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 10.1912
  • Accuracy: 0.0008

Model description

First test with small subset on M1Pro. Generates valid files, notes very clustered with long gaps

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

training_config: vocab_size: 30000 hidden_size: 256 intermediate_size: 512 num_hidden_layers: 4 num_attention_heads: 4 num_key_value_heads: 4 sliding_window: 4 max_position_embeddings: 1024 pad_token_id: 0 bos_token_id: 1 eos_token_id: 2

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 444
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 24
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.3
  • training_steps: 2000

Training results

Training Loss Epoch Step Accuracy Validation Loss
10.2727 3.2283 100 0.0000 10.3284
9.7582 6.4565 200 0.0026 10.0966
9.2052 9.6848 300 0.0037 9.9513
8.8216 12.9130 400 0.0034 9.9538
8.406 16.1304 500 0.0029 9.9524
7.8326 19.3587 600 0.0021 9.9458
7.1956 22.5870 700 0.0017 9.9864
6.5659 25.8152 800 0.0015 9.9258
5.9719 29.0326 900 0.0015 9.9710
5.4031 32.2609 1000 0.0011 9.9116
4.9784 35.4891 1100 0.0012 9.9819
4.6684 38.7174 1200 0.0009 10.0142
4.3184 41.9783 1300 10.0483 0.0010
4.1251 45.1957 1400 10.0964 0.0008
3.909 48.4239 1500 10.1322 0.0009
3.7535 51.6522 1600 10.1587 0.0009
3.681 54.8804 1700 10.1785 0.0008
3.688 58.0978 1800 10.1871 0.0008
3.6685 61.3261 1900 10.1912 0.0008
3.6326 64.5543 2000 10.1912 0.0008

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
16.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train sandernotenbaert/OKAI-midi-gen-v-001

Collection including sandernotenbaert/OKAI-midi-gen-v-001