wav2vec2-large-xlsr-53_train_data_full

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4168
  • Wer: 0.3383

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
3.0459 0.73 500 3.2037 0.9995
0.7938 1.45 1000 0.7432 0.6373
0.503 2.18 1500 0.5517 0.5115
0.4475 2.91 2000 0.4916 0.4624
0.3575 3.63 2500 0.4612 0.4362
0.3206 4.36 3000 0.4546 0.4198
0.3155 5.09 3500 0.4073 0.3929
0.2827 5.81 4000 0.4172 0.3808
0.2575 6.54 4500 0.4183 0.3741
0.2399 7.27 5000 0.4181 0.3680
0.2455 7.99 5500 0.3981 0.3604
0.2512 8.72 6000 0.4203 0.3612
0.221 9.45 6500 0.4073 0.3560
0.19 10.17 7000 0.4206 0.3547
0.207 10.9 7500 0.3992 0.3517
0.187 11.63 8000 0.4078 0.3517
0.2029 12.35 8500 0.4143 0.3469
0.171 13.08 9000 0.4007 0.3430
0.1658 13.81 9500 0.3862 0.3422
0.2021 14.53 10000 0.4132 0.3454
0.165 15.26 10500 0.3997 0.3407
0.1562 15.99 11000 0.4069 0.3416
0.1613 16.71 11500 0.4040 0.3393
0.1713 17.44 12000 0.4094 0.3411
0.1541 18.17 12500 0.4043 0.3367
0.144 18.89 13000 0.4086 0.3374
0.1483 19.62 13500 0.4168 0.3383

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu102
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support