SentenceTransformer based on hiiamsid/sentence_similarity_spanish_es
This is a sentence-transformers model finetuned from hiiamsid/sentence_similarity_spanish_es. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: hiiamsid/sentence_similarity_spanish_es
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sd-dreambooth-library/mks-similarity")
# Run inference
sentences = [
'¿Qué modelo corresponde al código YP107?',
'¿Cuánto cuesta la llave P123VE?',
'¿La llave TE4 pertenece a qué marca?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 91,044 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 10 tokens
- mean: 17.16 tokens
- max: 41 tokens
- min: 9 tokens
- mean: 17.26 tokens
- max: 40 tokens
- min: 0.0
- mean: 0.51
- max: 1.0
- Samples:
sentence1 sentence2 label ¿CY1 HELLO KITTY CORAZONES tiene un precio accesible?
¿Cuánto cuesta la llave CY43?
0.0
¿Qué modelo corresponde al código OP12?
¿Me puedes decir cuánto vale CHEVROLET GM29?
0.0
¿YALE PERSONAJE HULK tiene un precio accesible?
¿Cuánto debo pagar por la llave con código YP117?
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 10,116 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 10 tokens
- mean: 17.08 tokens
- max: 42 tokens
- min: 10 tokens
- mean: 17.33 tokens
- max: 42 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence1 sentence2 label ¿Cuál es el precio de la AM3 AMERICAN LOCK?
¿Cuánto debo pagar por la llave con código AM3?
1.0
¿Cuánto debo pagar por la llave con código MAS9?
¿La llave MAS9 pertenece a qué marca?
1.0
¿La llave YP113 pertenece a qué marca?
¿Qué llave tiene el código E029?
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0351 | 100 | 0.1663 | - |
0.0703 | 200 | 0.1023 | - |
0.1054 | 300 | 0.0807 | - |
0.1405 | 400 | 0.0723 | - |
0.1757 | 500 | 0.0614 | 0.0535 |
0.2108 | 600 | 0.0569 | - |
0.2460 | 700 | 0.052 | - |
0.2811 | 800 | 0.0382 | - |
0.3162 | 900 | 0.0408 | - |
0.3514 | 1000 | 0.0358 | 0.0329 |
0.3865 | 1100 | 0.0353 | - |
0.4216 | 1200 | 0.032 | - |
0.4568 | 1300 | 0.0303 | - |
0.4919 | 1400 | 0.0275 | - |
0.5271 | 1500 | 0.0263 | 0.0223 |
0.5622 | 1600 | 0.0237 | - |
0.5973 | 1700 | 0.0215 | - |
0.6325 | 1800 | 0.0233 | - |
0.6676 | 1900 | 0.0198 | - |
0.7027 | 2000 | 0.022 | 0.0163 |
0.7379 | 2100 | 0.0185 | - |
0.7730 | 2200 | 0.0178 | - |
0.8082 | 2300 | 0.0168 | - |
0.8433 | 2400 | 0.018 | - |
0.8784 | 2500 | 0.0158 | 0.0127 |
0.9136 | 2600 | 0.0141 | - |
0.9487 | 2700 | 0.015 | - |
0.9838 | 2800 | 0.0131 | - |
1.0190 | 2900 | 0.0117 | - |
1.0541 | 3000 | 0.0106 | 0.0100 |
1.0892 | 3100 | 0.0082 | - |
1.1244 | 3200 | 0.0088 | - |
1.1595 | 3300 | 0.0084 | - |
1.1947 | 3400 | 0.0087 | - |
1.2298 | 3500 | 0.0093 | 0.0079 |
1.2649 | 3600 | 0.0106 | - |
1.3001 | 3700 | 0.0097 | - |
1.3352 | 3800 | 0.0074 | - |
1.3703 | 3900 | 0.0072 | - |
1.4055 | 4000 | 0.0094 | 0.0067 |
1.4406 | 4100 | 0.0062 | - |
1.4758 | 4200 | 0.0072 | - |
1.5109 | 4300 | 0.0081 | - |
1.5460 | 4400 | 0.0075 | - |
1.5812 | 4500 | 0.0071 | 0.0059 |
1.6163 | 4600 | 0.0049 | - |
1.6514 | 4700 | 0.0064 | - |
1.6866 | 4800 | 0.0072 | - |
1.7217 | 4900 | 0.0075 | - |
1.7569 | 5000 | 0.0062 | 0.0052 |
1.7920 | 5100 | 0.0061 | - |
1.8271 | 5200 | 0.0059 | - |
1.8623 | 5300 | 0.0062 | - |
1.8974 | 5400 | 0.005 | - |
1.9325 | 5500 | 0.0068 | 0.0048 |
1.9677 | 5600 | 0.0051 | - |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for sd-dreambooth-library/mks-similarity
Base model
hiiamsid/sentence_similarity_spanish_es