metadata
library_name: transformers
license: apache-2.0
base_model: Salesforce/codet5-small
tags:
- generated_from_trainer
datasets:
- code_search_net
metrics:
- bleu
model-index:
- name: code_docstring_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: code_search_net
type: code_search_net
config: python
split: validation
args: python
metrics:
- name: Bleu
type: bleu
value: 0.08377962983846503
code_docstring_model
This model is a fine-tuned version of Salesforce/codet5-small on the code_search_net dataset. It achieves the following results on the evaluation set:
- Loss: 0.9435
- Bleu: 0.0838
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu |
---|---|---|---|---|
1.2873 | 0.9993 | 1076 | 1.1220 | 0.2248 |
1.1474 | 1.9993 | 2152 | 1.0673 | 0.2589 |
1.112 | 2.9993 | 3228 | 1.0406 | 0.2379 |
1.0849 | 3.9993 | 4304 | 1.0252 | 0.2432 |
1.0602 | 4.9993 | 5380 | 1.0126 | 0.1499 |
1.0565 | 5.9993 | 6456 | 1.0030 | 0.1413 |
1.0576 | 6.9993 | 7532 | 0.9964 | 0.0616 |
1.0174 | 7.9993 | 8608 | 0.9883 | 0.0935 |
1.0301 | 8.9993 | 9684 | 0.9828 | 0.0843 |
0.9884 | 9.9993 | 10760 | 0.9768 | 0.1363 |
0.9998 | 10.9993 | 11836 | 0.9702 | 0.1104 |
0.995 | 11.9993 | 12912 | 0.9647 | 0.1169 |
0.9852 | 12.9993 | 13988 | 0.9593 | 0.0962 |
0.9594 | 13.9993 | 15064 | 0.9549 | 0.0973 |
0.9553 | 14.9993 | 16140 | 0.9510 | 0.0923 |
0.9717 | 15.9993 | 17216 | 0.9486 | 0.0821 |
0.9667 | 16.9993 | 18292 | 0.9468 | 0.0888 |
0.957 | 17.9993 | 19368 | 0.9448 | 0.0858 |
0.9649 | 18.9993 | 20444 | 0.9438 | 0.0875 |
0.9454 | 19.9993 | 21520 | 0.9435 | 0.0838 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0