Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

Model Card for Model ID

This is a fined-tuned Phi 3.5 Vision Instruct model for receipt OCR specifically.

It has been fine-tuned on the SROIEv2 datasets and the annotations were generated using Qwen2.5-3B VL.

The dataset is available on Kaggle.

Model Details

Technical Specifications

Compute Infrastructure

The model was trained on a system with 10GB RTX 3080 GPU, 10th generation i7 CPU, and 32GB RAM.

Framework versions

torch==2.5.1
torchvision==0.20.1
torchaudio==2.5.1
flash-attn==2.7.2.post1
triton==3.1.0
transformers==4.51.3
accelerate==1.2.0
datasets==4.1.1
huggingface-hub==0.31.1
peft==0.15.2
trl==0.18.0
safetensors==0.4.5
sentencepiece==0.2.0
tiktoken==0.8.0
einops==0.8.0
opencv-python==4.10.0.84
pillow==10.2.0
numpy==2.2.0
scipy==1.14.1
tqdm==4.66.4
pandas==2.2.2
pyarrow==21.0.0
regex==2024.11.6
requests==2.32.3
python-dotenv==1.1.1
wandb==0.22.1
rich==13.9.4
jiwer==4.0.0 
bitsandbytes==0.45.0

How to Get Started with the Model

Use the code below to get started with the model.

import torch
import matplotlib.pyplot as plt
import transformers

from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor
from transformers import BitsAndBytesConfig

model_id = 'sovitrath/Phi-3.5-Vision-Instruct-OCR'

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map='auto',
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    # _attn_implementation='flash_attention_2', # Use `flash_attention_2` on Ampere GPUs and above and `eager` on older GPUs.
    _attn_implementation='eager', # Use `flash_attention_2` on Ampere GPUs and above and `eager` on older GPUs.
)

# processor = AutoProcessor.from_pretrained('sovitrath/Phi-3.5-vision-instruct', trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

test_image = Image.open('../inference_data/image_1.jpeg').convert('RGB')

plt.figure(figsize=(9, 7))
plt.imshow(test_image)
plt.show()

def test(model, processor, image, max_new_tokens=1024, device='cuda'):
    placeholder = f"<|image_1|>\n"
    messages = [
        {
            'role': 'user',
            'content': placeholder + 'OCR this image accurately'
        },
    ]
    
    # Prepare the text input by applying the chat template
    text_input = processor.tokenizer.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=False
    )

    if image.mode != 'RGB':
        image = image.convert('RGB')
        
    # Prepare the inputs for the model
    model_inputs = processor(
        text=text_input,
        images=[image],
        return_tensors='pt',
    ).to(device)  # Move inputs to the specified device

    # Generate text with the model
    generated_ids = model.generate(**model_inputs, max_new_tokens=max_new_tokens)

    # Trim the generated ids to remove the input ids
    trimmed_generated_ids = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(model_inputs.input_ids, generated_ids)
    ]

    # Decode the output text
    output_text = processor.batch_decode(
        trimmed_generated_ids,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False
    )

    return output_text[0]  # Return the first decoded output text
    
output = test(model, processor, test_image)
print(output)

Training Details

Training Data

It has been fine-tuned on the SROIEv2 datasets and the annotations were generated using Qwen2.5-3B VL.

Training Procedure

  • It has been fine-tuned for 1200 steps. However, the checkpoints correspond to the model saved at 400 steps which gave the best loss.
  • The text file annotations were generated using Qwen2.5-3B VL.

Training Hyperparameters

  • It is a LoRA model.

LoRA configuration:

# Configure LoRA
peft_config = LoraConfig(
    r=8,
    lora_alpha=16,
    lora_dropout=0.0,
    target_modules=['down_proj','o_proj','k_proj','q_proj','gate_proj','up_proj','v_proj'],
    use_dora=True,
    init_lora_weights='gaussian'
)

# Apply PEFT model adaptation
peft_model = get_peft_model(model, peft_config)

# Print trainable parameters
peft_model.print_trainable_parameters()

Trainer configuration:

# Configure training arguments using SFTConfig
training_args = transformers.TrainingArguments(
    output_dir=output_dir,
    logging_dir=output_dir,
    # num_train_epochs=1,
    max_steps=1200, # 625,
    per_device_train_batch_size=1, # Batch size MUST be 1 for Phi 3.5 Vision Instruct fine-tuning
    per_device_eval_batch_size=1, # Batch size MUST be 1 for Phi 3.5 Vision Instruct fine-tuning
    gradient_accumulation_steps=4, # 4
    warmup_steps=50,
    learning_rate=1e-4,
    weight_decay=0.01,
    logging_steps=400,
    eval_steps=400,
    save_steps=400,
    logging_strategy='steps',
    eval_strategy='steps',
    save_strategy='steps',
    save_total_limit=2,
    optim='adamw_torch_fused',
    bf16=True,
    report_to='wandb',
    remove_unused_columns=False,
    gradient_checkpointing=True,
    dataloader_num_workers=4,
    # dataset_text_field='',
    # dataset_kwargs={'skip_prepare_dataset': True},
    load_best_model_at_end=True,
    save_safetensors=True,
)

Evaluation

The current best validation loss is 0.377421.

The CER on the test set is 0.355. The Qwen2.5-3B VL test annotations were used as ground truth.

Downloads last month
74
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for sovitrath/Phi-3.5-Vision-Instruct-OCR

Adapter
(1)
this model