Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain.tools.retriever import create_retriever_tool | |
from langchain_community.retrievers import BM25Retriever | |
from smolagents import DuckDuckGoSearchTool | |
from smolagents import Tool | |
from langchain.vectorstores import FAISS | |
import faiss | |
from langchain_community.docstore.in_memory import InMemoryDocstore | |
# Load environment variables | |
load_dotenv() | |
class QuestionRetrieverTool(Tool): | |
name="Question Search", | |
description="Retrieve similar questions from the vector store." | |
inputs = { | |
"query": { | |
"type": "string", | |
"description": "The question you want relation about." | |
} | |
} | |
output_type = "string" | |
def __init__(self, docs): | |
self.is_initialized = False | |
self.retriever = BM25Retriever.from_documents(docs) | |
def forward(self, query: str): | |
results = self.retriever.get_relevant_documents(query) | |
if results: | |
return "\n\n".join([doc.page_content for doc in results[:3]]) | |
else: | |
return "No matching Questions found." | |
def wiki_search(query: str) -> dict: | |
"""Search Wikipedia and return up to 2 documents.""" | |
docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs] | |
return {"wiki_results": "\n---\n".join(results)} | |
def web_search(query: str) -> dict: | |
"""Search DDG and return up to 3 results.""" | |
docs = DuckDuckGoSearchTool(max_results=3).invoke(query=query) | |
results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs] | |
return {"web_results": "\n---\n".join(results)} | |
# --- Load system prompt --- | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
sys_msg = SystemMessage(content=system_prompt) | |
# --- Retriever Tool --- | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
embedding_dim = 768 # for 'all-mpnet-base-v2' | |
empty_index = faiss.IndexFlatL2(embedding_dim) | |
docstore = InMemoryDocstore({}) | |
vector_store = FAISS(embedding_function=embeddings, index=empty_index, docstore=docstore, index_to_docstore_id={}) | |
retriever_tool = create_retriever_tool( | |
retriever=vector_store.as_retriever(), | |
name="Question Search", | |
description="Retrieve similar questions from the vector store." | |
) | |
tools = [ | |
wiki_search, | |
web_search, | |
retriever_tool, | |
] | |
# --- Graph Builder --- | |
def build_graph(): | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
repo_id="meta-llama/Llama-2-7b-chat-hf", | |
temperature=0, | |
huggingfacehub_api_token=os.getenv("HF_TOKEN") | |
) | |
) | |
# Bind tools to LLM | |
llm_with_tools = llm.bind_tools(tools) | |
# Define nodes | |
def assistant(state: MessagesState): | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
# Retriever node returns AIMessage | |
def retriever(state: MessagesState): | |
query = state["messages"][-1].content | |
similar_docs = vector_store.similarity_search(query, k=1) | |
if similar_docs: | |
reference = similar_docs[0].page_content | |
context_msg = HumanMessage(content=f"Here is a similar question and answer for reference:\n\n{reference}") | |
else: | |
context_msg = HumanMessage(content="No relevant example found.") | |
return { | |
"messages": [sys_msg] + state["messages"] + [context_msg] | |
} | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
builder.add_edge(START, "retriever") | |
builder.add_edge("retriever", "assistant") | |
builder.add_conditional_edges("assistant", tools_condition) | |
builder.add_edge("tools", "assistant") | |
# Compile graph | |
return builder.compile() | |