1inkusFace's picture
Update app.py
c1ef20f verified
import spaces
import os
import uuid
os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
alloc_conf_parts = [
'expandable_segments:True',
'pinned_use_background_threads:True' # Specific to pinned memory.
]
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
import torch
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
import torchaudio
from einops import rearrange
import gradio as gr
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
model, model_config = get_pretrained_model("ford442/stable-audio-open-1.0")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
model.to(device,torch.float32)
@spaces.GPU(duration=60)
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7, use_bfloat=False, use_eval=False):
print(f"Prompt received: {prompt}")
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
print("Model moved to device.")
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
print(f"Conditioning: {conditioning}")
print("Generating audio...")
if use_bfloat==True:
model.to(torch.bfloat16)
if use_eval==True:
model.eval()
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device
)
print("Audio generated.")
output = rearrange(output, "b d n -> d (b n)")
# Peak normalize, clip, convert to int16
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
unique_filename = f"output_{uuid.uuid4().hex}.mp3"
print(f"Saving audio to file: {unique_filename}")
torchaudio.save(
unique_filename,
output,
sample_rate,
format="mp3",
encoding="MP3",
bits_per_sample=320
)
print(f"Audio saved: {unique_filename}")
return unique_filename
interface = gr.Interface(
fn=generate_audio,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
gr.Slider(0, 420, value=30, label="Duration in Seconds"),
gr.Slider(10, 420, value=100, step=10, label="Number of Diffusion Steps"),
gr.Slider(1.0, 32.0, value=7.0, step=0.1, label="CFG Scale"),
gr.Checkbox(value=False, label="Use Brainfloat"),
gr.Checkbox(value=False, label="Use eval()")
],
outputs=gr.Audio(type="filepath", label="Generated Audio"),
title="Stable Audio Generator",
description="Generate variable-length stereo audio at 44.1kHz from text prompts using Stable Audio Open 1.0.",
examples=[
[
"Create a serene soundscape of a quiet beach at sunset.", # Text prompt
45, # Duration in Seconds
100, # Number of Diffusion Steps
10.0, # CFG Scale
],
[
"Generate an energetic and bustling city street scene with distant traffic and close conversations.", # Text prompt
30, # Duration in Seconds
120, # Number of Diffusion Steps
5.0, # CFG Scale
],
[
"Simulate a forest ambiance with birds chirping and wind rustling through the leaves.", # Text prompt
60, # Duration in Seconds
140, # Number of Diffusion Steps
7.5, # CFG Scale
],
[
"Recreate a gentle rainfall with distant thunder.", # Text prompt
35, # Duration in Seconds
110, # Number of Diffusion Steps
8.0, # CFG Scale
],
[
"Imagine a jazz cafe environment with soft music and ambient chatter.", # Text prompt
25, # Duration in Seconds
90, # Number of Diffusion Steps
6.0, # CFG Scale
],
["Rock beat played in a treated studio, session drumming on an acoustic kit.",
30, # Duration in Seconds
100, # Number of Diffusion Steps
7.0, # CFG Scale
]
])
interface.launch()