File size: 1,912 Bytes
4fb4269
 
 
f49023b
4fb4269
 
d26c7f3
 
 
4fb4269
 
 
 
 
cc6bd3b
4fb4269
d26c7f3
cc6bd3b
4fb4269
 
d26c7f3
 
4fb4269
 
 
 
 
d26c7f3
 
4fb4269
 
d26c7f3
4fb4269
 
 
 
d26c7f3
 
4fb4269
d26c7f3
4fb4269
d26c7f3
 
4fb4269
 
 
 
 
 
d26c7f3
4fb4269
 
 
 
d26c7f3
 
4fb4269
 
d26c7f3
4fb4269
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_openai import ChatOpenAI

from args import LLMInterface, Args, AgentPreset


class LLMFactory():

    @classmethod
    def create(cls, agent_preset: AgentPreset):
        interface = agent_preset.get_interface()

        if interface == LLMInterface.OPENAI:
            model = cls._create_openai_model(agent_preset)
        elif interface == LLMInterface.HUGGINGFACE:
            model = cls._create_huggingface_model(agent_preset)
        else:
            raise ValueError(f"Interface '{interface}' is not supported !")
        
        return model

    @staticmethod
    def _create_openai_model(agent_preset: AgentPreset):
        model_name = agent_preset.get_model_name()
        temperature = agent_preset.get_temperature()
        max_tokens = agent_preset.get_max_tokens()
        repeat_penalty = agent_preset.get_repeat_penalty()

        kwargs = {
            "model": model_name,
            "base_url": Args.api_base,
            "api_key": Args.api_key,
            "temperature": temperature,
            "max_completion_tokens": max_tokens,
            # "presence_penalty": repeat_penalty,
            "frequency_penalty": repeat_penalty
        }

        model = ChatOpenAI(**kwargs)

        return model

    @staticmethod
    def _create_huggingface_model(agent_preset: AgentPreset):
        model_name = agent_preset.get_model_name()
        temperature = agent_preset.get_temperature()
        max_tokens = agent_preset.get_max_tokens()
        repeat_penalty = agent_preset.get_repeat_penalty()

        kwargs = {
            "model": model_name,
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "repetition_penalty": repeat_penalty
        }

        llm = HuggingFaceEndpoint(**kwargs)
        model = ChatHuggingFace(llm=llm)

        return model