File size: 5,574 Bytes
cbc840b
b88f708
f20a187
cbc840b
b88f708
396e877
f20a187
 
396e877
f20a187
39c8921
396e877
f20a187
b88f708
39c8921
396e877
 
 
39c8921
b88f708
396e877
f837ee9
396e877
 
 
 
96b6780
396e877
b88f708
 
396e877
 
cbc840b
396e877
 
b88f708
396e877
f67d206
b88f708
39c8921
cbc840b
 
396e877
cbc840b
b88f708
 
 
cbc840b
 
 
 
 
 
 
 
b88f708
cbc840b
 
39c8921
b88f708
cbc840b
396e877
c3b581c
f837ee9
 
 
 
 
c3b581c
cbc840b
 
 
 
f837ee9
cbc840b
f67d206
396e877
f67d206
 
f837ee9
f67d206
f837ee9
b88f708
39c8921
b88f708
cbc840b
 
f20a187
 
 
 
 
 
 
 
 
 
cbc840b
f20a187
f837ee9
f67d206
f20a187
f837ee9
f67d206
 
 
f837ee9
f67d206
c3b581c
cbc840b
f837ee9
b88f708
396e877
cbc840b
f837ee9
b88f708
f837ee9
c3b581c
b88f708
cbc840b
b88f708
 
 
f837ee9
cbc840b
 
f837ee9
cbc840b
 
f837ee9
cbc840b
c3b581c
f837ee9
cbc840b
f837ee9
f20a187
cbc840b
f837ee9
cbc840b
f837ee9
b88f708
cbc840b
f837ee9
b88f708
f837ee9
c3b581c
f837ee9
b88f708
 
f20a187
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import streamlit as st
import torch
import openai
import os
import time
import requests
from PIL import Image
import tempfile
import clip
import torch.nn.functional as F
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM, GPT2LMHeadModel
from rouge_score import rouge_scorer

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# OpenAI Key
openai.api_key = os.getenv("OPENAI_API_KEY")

# ---- Load MBart (Translation) ----
translator_model = MBartForConditionalGeneration.from_pretrained(
    "facebook/mbart-large-50-many-to-many-mmt"
)
translator_tokenizer = MBart50TokenizerFast.from_pretrained(
    "facebook/mbart-large-50-many-to-many-mmt"
)
translator_model.to(device)
translator_tokenizer.src_lang = "ta_IN"

# ---- GPT-2 ----
gen_model = GPT2LMHeadModel.from_pretrained("gpt2")
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
gen_model.to(device)
gen_model.eval()

# ---- CLIP ----
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)

# ---- Translation ----
def translate_tamil_to_english(text, reference=None):
    start = time.time()
    inputs = translator_tokenizer(text, return_tensors="pt").to(device)
    outputs = translator_model.generate(
        **inputs,
        forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
    )
    translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    duration = round(time.time() - start, 2)

    rouge_l = None
    if reference:
        scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
        score = scorer.score(reference.lower(), translated.lower())
        rouge_l = round(score["rougeL"].fmeasure, 4)

    return translated, duration, rouge_l

# ---- Creative Text ----
def generate_creative_text(prompt, max_length=100):
    start = time.time()
    input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
    output = gen_model.generate(
        input_ids,
        max_length=max_length,
        do_sample=True,
        top_k=50,
        temperature=0.9
    )
    text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
    duration = round(time.time() - start, 2)

    tokens = text.split()
    rep_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens) if len(tokens) > 1 else 0

    with torch.no_grad():
        input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
        outputs = gen_model(input_ids, labels=input_ids)
        loss = outputs.loss
        perplexity = torch.exp(loss).item()

    return text, duration, len(tokens), round(rep_rate, 4), round(perplexity, 4)

# ---- Image Generation ----
def generate_image(prompt):
    try:
        start = time.time()
        response = openai.images.generate(
            model="dall-e-3",
            prompt=prompt,
            size="512x512",
            quality="standard",
            n=1
        )
        image_url = response.data[0].url
        image_data = Image.open(requests.get(image_url, stream=True).raw).resize((256, 256))

        tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
        image_data.save(tmp_file.name)
        duration = round(time.time() - start, 2)

        image_input = clip_preprocess(image_data).unsqueeze(0).to(device)
        text_input = clip.tokenize([prompt]).to(device)
        with torch.no_grad():
            image_features = clip_model.encode_image(image_input)
            text_features = clip_model.encode_text(text_input)
            similarity = F.cosine_similarity(image_features, text_features).item()

        return tmp_file.name, duration, round(similarity, 4)
    except Exception as e:
        return None, None, f"Image generation failed: {str(e)}"

# ---- UI ----
st.set_page_config(page_title="Tamil β†’ English + AI Art", layout="centered")
st.title("🧠 Tamil β†’ English + 🎨 Creative Text + πŸ–ΌοΈ AI Image")

tamil_input = st.text_area("✍️ Enter Tamil text", height=150)
reference_input = st.text_input("πŸ“˜ Optional: Reference English translation for ROUGE")

if st.button("πŸš€ Generate Output"):
    if not tamil_input.strip():
        st.warning("Please enter Tamil text.")
    else:
        with st.spinner("πŸ”„ Translating..."):
            english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)

        st.success(f"βœ… Translated in {t_time}s")
        st.markdown(f"**πŸ“ English Translation:** `{english_text}`")
        if rouge_l is not None:
            st.markdown(f"πŸ“Š ROUGE-L Score: `{rouge_l}`")

        with st.spinner("πŸ–ΌοΈ Generating image..."):
            image_path, img_time, clip_score = generate_image(english_text)

        if image_path:
            st.success(f"πŸ–ΌοΈ Image generated in {img_time}s using OpenAI DALLΒ·E 3")
            st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
            st.markdown(f"πŸ” **CLIP Text-Image Similarity:** `{clip_score}`")
        else:
            st.error(clip_score)

        with st.spinner("πŸ’‘ Generating creative text..."):
            creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)

        st.success(f"✨ Creative text in {c_time}s")
        st.markdown(f"**🧠 Creative Output:** `{creative}`")
        st.markdown(f"πŸ“Œ Tokens: `{tokens}`, πŸ” Repetition Rate: `{rep_rate}`, πŸ“‰ Perplexity: `{ppl}`")

st.markdown("---")
st.caption("Built by Sureshkumar R | MBart + GPT-2 + OpenAI DALLΒ·E 3")