File size: 5,543 Bytes
cbc840b b88f708 cbc840b b88f708 cbc840b b88f708 c3b581c b88f708 cbc840b c3b581c b88f708 c3b581c b88f708 c3b581c b88f708 cbc840b b88f708 c3b581c b88f708 cbc840b b88f708 c3b581c b88f708 c3b581c b88f708 c3b581c b88f708 c3b581c f67d206 c3b581c f67d206 b88f708 c3b581c cbc840b b88f708 cbc840b b88f708 cbc840b b88f708 cbc840b c3b581c b88f708 cbc840b b88f708 c3b581c cbc840b c3b581c f67d206 c3b581c f67d206 c3b581c b88f708 c3b581c b88f708 cbc840b c3b581c f67d206 c3b581c cbc840b f67d206 c3b581c f67d206 c3b581c cbc840b c3b581c b88f708 cbc840b b88f708 cbc840b c3b581c b88f708 cbc840b b88f708 cbc840b c3b581c cbc840b c3b581c cbc840b c3b581c cbc840b c3b581c b88f708 cbc840b f67d206 b88f708 cbc840b c3b581c f67d206 b88f708 cbc840b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import streamlit as st
import torch
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM
from diffusers import StableDiffusionPipeline
from rouge_score import rouge_scorer
from PIL import Image
import clip
import tempfile
import os
import math
import time
# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
# Translation model
translator_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt").to(device)
translator_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator_tokenizer.src_lang = "ta_IN"
# GPT-2 for creative text
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
# Stable Diffusion v1.4
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-1-4",
torch_dtype=torch.float32,
use_auth_token=os.getenv("HF_TOKEN") # set this on Hugging Face Spaces
).to(device)
pipe.safety_checker = None # Optional
# Load CLIP for image-text similarity
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
# Translation function
def translate_tamil_to_english(text, reference=None):
start = time.time()
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
outputs = translator_model.generate(
**inputs,
forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
)
translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
duration = round(time.time() - start, 2)
rouge_l = None
if reference:
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
score = scorer.score(reference.lower(), translated.lower())
rouge_l = round(score["rougeL"].fmeasure, 4)
return translated, duration, rouge_l
# Text generation with repetition & perplexity
def generate_creative_text(prompt, max_length=100):
start = time.time()
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
output = gen_model.generate(
input_ids, max_length=max_length,
do_sample=True, top_k=50, temperature=0.9
)
text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
duration = round(time.time() - start, 2)
tokens = text.split()
repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)
# Perplexity
with torch.no_grad():
outputs = gen_model(input_ids, labels=input_ids)
loss = outputs.loss
perplexity = math.exp(loss.item())
return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 3)
# Image generation + CLIP similarity
def generate_image(prompt):
try:
start = time.time()
result = pipe(prompt)
image = result.images[0].resize((256, 256))
duration = round(time.time() - start, 2)
# Save image
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
image.save(tmp_file.name)
# CLIP similarity
image_input = clip_preprocess(image).unsqueeze(0).to(device)
text_input = clip.tokenize(prompt).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_input)
text_features = clip_model.encode_text(text_input)
similarity = torch.cosine_similarity(image_features, text_features).item()
return tmp_file.name, duration, round(similarity, 4)
except Exception as e:
return None, 0, f"Image generation failed: {str(e)}"
# Streamlit UI
st.set_page_config(page_title="Tamil β English + AI Art", layout="centered")
st.title("π§ Tamil β English + π¨ Creative Text + AI Image")
tamil_input = st.text_area("βοΈ Enter Tamil text here", height=150)
reference_input = st.text_input("π Optional: Reference English translation for ROUGE")
if st.button("π Generate Output"):
if not tamil_input.strip():
st.warning("Please enter Tamil text.")
else:
with st.spinner("π Translating Tamil to English..."):
english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)
st.success(f"β
Translated in {t_time} seconds")
st.markdown(f"**π English Translation:** `{english_text}`")
if rouge_l is not None:
st.markdown(f"π **ROUGE-L Score:** `{rouge_l}`")
with st.spinner("πΌοΈ Generating image..."):
image_path, img_time, similarity = generate_image(english_text)
if isinstance(similarity, float):
st.success(f"πΌοΈ Image generated in {img_time} seconds")
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
st.markdown(f"π― **CLIP Text-Image Similarity:** `{similarity}`")
else:
st.error(similarity)
with st.spinner("π‘ Generating creative text..."):
creative, c_time, tokens, rep_rate, perplexity = generate_creative_text(english_text)
st.success(f"β¨ Creative text generated in {c_time} seconds")
st.markdown(f"**π§ Creative Output:** `{creative}`")
st.markdown(f"π Tokens: `{tokens}`, π Repetition Rate: `{rep_rate}`")
st.markdown(f"π Perplexity: `{perplexity}`")
st.markdown("---")
st.caption("Built by Sureshkumar R using MBart, GPT-2 & Stable Diffusion on Hugging Face")
|