File size: 5,543 Bytes
cbc840b
b88f708
cbc840b
 
b88f708
cbc840b
b88f708
c3b581c
b88f708
cbc840b
c3b581c
b88f708
 
c3b581c
b88f708
 
c3b581c
b88f708
cbc840b
b88f708
 
c3b581c
b88f708
cbc840b
b88f708
c3b581c
b88f708
c3b581c
b88f708
c3b581c
b88f708
c3b581c
f67d206
c3b581c
f67d206
b88f708
c3b581c
cbc840b
 
b88f708
cbc840b
b88f708
 
 
cbc840b
 
 
 
 
 
 
 
b88f708
cbc840b
 
c3b581c
b88f708
cbc840b
b88f708
c3b581c
 
 
 
cbc840b
 
 
 
 
 
c3b581c
f67d206
 
 
c3b581c
f67d206
c3b581c
b88f708
c3b581c
b88f708
cbc840b
 
 
 
c3b581c
f67d206
c3b581c
cbc840b
 
f67d206
 
 
c3b581c
f67d206
 
 
 
 
c3b581c
cbc840b
c3b581c
b88f708
 
cbc840b
 
b88f708
cbc840b
c3b581c
b88f708
cbc840b
b88f708
 
 
cbc840b
 
 
 
 
 
 
 
c3b581c
 
cbc840b
c3b581c
cbc840b
 
c3b581c
cbc840b
c3b581c
b88f708
cbc840b
f67d206
b88f708
cbc840b
c3b581c
 
f67d206
b88f708
 
cbc840b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import streamlit as st
import torch
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM
from diffusers import StableDiffusionPipeline
from rouge_score import rouge_scorer
from PIL import Image
import clip
import tempfile
import os
import math
import time

# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"

# Translation model
translator_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt").to(device)
translator_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator_tokenizer.src_lang = "ta_IN"

# GPT-2 for creative text
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")

# Stable Diffusion v1.4
pipe = StableDiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-1-4",
    torch_dtype=torch.float32,
    use_auth_token=os.getenv("HF_TOKEN")  # set this on Hugging Face Spaces
).to(device)
pipe.safety_checker = None  # Optional

# Load CLIP for image-text similarity
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)

# Translation function
def translate_tamil_to_english(text, reference=None):
    start = time.time()
    inputs = translator_tokenizer(text, return_tensors="pt").to(device)
    outputs = translator_model.generate(
        **inputs,
        forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
    )
    translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    duration = round(time.time() - start, 2)

    rouge_l = None
    if reference:
        scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
        score = scorer.score(reference.lower(), translated.lower())
        rouge_l = round(score["rougeL"].fmeasure, 4)

    return translated, duration, rouge_l

# Text generation with repetition & perplexity
def generate_creative_text(prompt, max_length=100):
    start = time.time()
    input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
    output = gen_model.generate(
        input_ids, max_length=max_length,
        do_sample=True, top_k=50, temperature=0.9
    )
    text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
    duration = round(time.time() - start, 2)

    tokens = text.split()
    repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)

    # Perplexity
    with torch.no_grad():
        outputs = gen_model(input_ids, labels=input_ids)
        loss = outputs.loss
        perplexity = math.exp(loss.item())

    return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 3)

# Image generation + CLIP similarity
def generate_image(prompt):
    try:
        start = time.time()
        result = pipe(prompt)
        image = result.images[0].resize((256, 256))
        duration = round(time.time() - start, 2)

        # Save image
        tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
        image.save(tmp_file.name)

        # CLIP similarity
        image_input = clip_preprocess(image).unsqueeze(0).to(device)
        text_input = clip.tokenize(prompt).to(device)
        with torch.no_grad():
            image_features = clip_model.encode_image(image_input)
            text_features = clip_model.encode_text(text_input)
            similarity = torch.cosine_similarity(image_features, text_features).item()

        return tmp_file.name, duration, round(similarity, 4)
    except Exception as e:
        return None, 0, f"Image generation failed: {str(e)}"

# Streamlit UI
st.set_page_config(page_title="Tamil β†’ English + AI Art", layout="centered")
st.title("🧠 Tamil β†’ English + 🎨 Creative Text + AI Image")

tamil_input = st.text_area("✍️ Enter Tamil text here", height=150)
reference_input = st.text_input("πŸ“˜ Optional: Reference English translation for ROUGE")

if st.button("πŸš€ Generate Output"):
    if not tamil_input.strip():
        st.warning("Please enter Tamil text.")
    else:
        with st.spinner("πŸ”„ Translating Tamil to English..."):
            english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)

        st.success(f"βœ… Translated in {t_time} seconds")
        st.markdown(f"**πŸ“ English Translation:** `{english_text}`")
        if rouge_l is not None:
            st.markdown(f"πŸ“Š **ROUGE-L Score:** `{rouge_l}`")

        with st.spinner("πŸ–ΌοΈ Generating image..."):
            image_path, img_time, similarity = generate_image(english_text)

        if isinstance(similarity, float):
            st.success(f"πŸ–ΌοΈ Image generated in {img_time} seconds")
            st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
            st.markdown(f"🎯 **CLIP Text-Image Similarity:** `{similarity}`")
        else:
            st.error(similarity)

        with st.spinner("πŸ’‘ Generating creative text..."):
            creative, c_time, tokens, rep_rate, perplexity = generate_creative_text(english_text)

        st.success(f"✨ Creative text generated in {c_time} seconds")
        st.markdown(f"**🧠 Creative Output:** `{creative}`")
        st.markdown(f"πŸ“Œ Tokens: `{tokens}`, πŸ” Repetition Rate: `{rep_rate}`")
        st.markdown(f"πŸ“‰ Perplexity: `{perplexity}`")

st.markdown("---")
st.caption("Built by Sureshkumar R using MBart, GPT-2 & Stable Diffusion on Hugging Face")