File size: 5,807 Bytes
cbc840b
b88f708
cbc840b
 
b88f708
cbc840b
b88f708
 
cbc840b
b88f708
f67d206
 
b88f708
cbc840b
b88f708
 
cbc840b
b88f708
cbc840b
b88f708
 
cbc840b
b88f708
cbc840b
b88f708
f67d206
b88f708
cbc840b
b88f708
f67d206
b88f708
f67d206
 
 
 
b88f708
cbc840b
 
 
b88f708
cbc840b
b88f708
 
 
cbc840b
 
 
 
 
 
 
 
b88f708
cbc840b
 
f67d206
b88f708
cbc840b
b88f708
cbc840b
 
 
 
 
 
 
f67d206
 
 
 
 
 
 
 
b88f708
f67d206
b88f708
cbc840b
 
 
 
f67d206
cbc840b
 
f67d206
 
 
 
 
 
 
 
 
 
 
 
cbc840b
f67d206
b88f708
 
cbc840b
 
b88f708
cbc840b
f67d206
b88f708
cbc840b
b88f708
 
 
cbc840b
 
 
 
 
 
 
 
 
 
 
f67d206
cbc840b
 
 
 
f67d206
cbc840b
 
b88f708
cbc840b
f67d206
b88f708
cbc840b
f67d206
 
 
 
 
b88f708
 
cbc840b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import streamlit as st
import torch
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM
from diffusers import StableDiffusionPipeline
from rouge_score import rouge_scorer
from PIL import Image
import tempfile
import os
import time
import clip
import torchvision.transforms as transforms

# Use CUDA if available
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load translation model (Tamil to English)
translator_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt").to(device)
translator_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator_tokenizer.src_lang = "ta_IN"

# Load GPT-2 for creative text generation
gen_model = AutoModelForCausalLM.from_pretrained("gpt2").to(device)
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")

# Load a lightweight image generation model
pipe = StableDiffusionPipeline.from_pretrained(
    "OFA-Sys/small-stable-diffusion-v0",
    torch_dtype=torch.float32,
    use_auth_token=os.getenv("HF_TOKEN")  # Set in Hugging Face Space secrets
).to(device)
pipe.safety_checker = None  # Optional: disable for speed

# Load CLIP model for image-text similarity
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)

# Translation Function
def translate_tamil_to_english(text, reference=None):
    start = time.time()
    inputs = translator_tokenizer(text, return_tensors="pt").to(device)
    outputs = translator_model.generate(
        **inputs,
        forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
    )
    translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    duration = round(time.time() - start, 2)

    rouge_l = None
    if reference:
        scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
        score = scorer.score(reference.lower(), translated.lower())
        rouge_l = round(score["rougeL"].fmeasure, 4)

    return translated, duration, rouge_l

# Creative Text Generator with Perplexity
def generate_creative_text(prompt, max_length=100):
    start = time.time()
    input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
    output = gen_model.generate(input_ids, max_length=max_length, do_sample=True, top_k=50, temperature=0.9)
    text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
    duration = round(time.time() - start, 2)

    tokens = text.split()
    repetition_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens)

    # Perplexity calculation
    with torch.no_grad():
        input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
        outputs = gen_model(input_ids, labels=input_ids)
        loss = outputs.loss
        perplexity = torch.exp(loss).item()

    return text, duration, len(tokens), round(repetition_rate, 4), round(perplexity, 4)

# AI Image Generator with CLIP Similarity
def generate_image(prompt):
    try:
        start = time.time()
        result = pipe(prompt)
        image = result.images[0].resize((256, 256))

        tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
        image.save(tmp_file.name)

        # CLIP similarity
        image_input = clip_preprocess(image).unsqueeze(0).to(device)
        text_input = clip.tokenize([prompt]).to(device)

        with torch.no_grad():
            image_features = clip_model.encode_image(image_input)
            text_features = clip_model.encode_text(text_input)
            similarity = torch.cosine_similarity(image_features, text_features).item()

        return tmp_file.name, round(time.time() - start, 2), round(similarity, 4)

    except Exception as e:
        return None, f"Image generation failed: {str(e)}", None

# Streamlit UI
st.set_page_config(page_title="Tamil β†’ English + AI Art", layout="centered")
st.title("🧠 Tamil β†’ English + 🎨 Creative Text + AI Image")

tamil_input = st.text_area("✍️ Enter Tamil text here", height=150)
reference_input = st.text_input("πŸ“˜ Optional: Reference English translation for ROUGE-L")

if st.button("πŸš€ Generate Output"):
    if not tamil_input.strip():
        st.warning("Please enter Tamil text.")
    else:
        with st.spinner("πŸ”„ Translating Tamil to English..."):
            english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)

        st.success(f"βœ… Translated in {t_time} seconds")
        st.markdown(f"**πŸ“ English Translation:** `{english_text}`")
        if rouge_l is not None:
            st.markdown(f"πŸ“Š **ROUGE-L Score:** `{rouge_l}`")
        else:
            st.info("ℹ️ ROUGE-L not calculated. Reference not provided.")

        with st.spinner("🎨 Generating image..."):
            image_path, img_time, clip_score = generate_image(english_text)

        if image_path:
            st.success(f"πŸ–ΌοΈ Image generated in {img_time} seconds")
            st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
            st.markdown(f"πŸ” **CLIP Text-Image Similarity:** `{clip_score}`")
        else:
            st.error(image_path)

        with st.spinner("πŸ’‘ Generating creative text..."):
            creative, c_time, tokens, rep_rate, perplexity = generate_creative_text(english_text)

        st.success(f"✨ Creative text generated in {c_time} seconds")
        st.markdown("**🧠 Creative Output:**")
        st.text(creative)
        st.markdown(f"πŸ“Œ Tokens: `{tokens}`")
        st.markdown(f"πŸ” Repetition Rate: `{rep_rate}`")
        st.markdown(f"πŸ“‰ Perplexity: `{perplexity}`")

st.markdown("---")
st.caption("Built by Sureshkumar R using MBart, GPT-2 & Stable Diffusion on Hugging Face")