24Sureshkumar's picture
Update app.py
2e90c14 verified
raw
history blame
5.64 kB
# Install the required libraries
# pip install transformers gradio Pillow requests
import os
import requests
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
from PIL import Image, ImageDraw
import io
import gradio as gr
import torch
# Detect if GPU is available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the MarianMT model and tokenizer for translation (Tamil to English)
model_name = "Helsinki-NLP/opus-mt-mul-en"
translation_model = MarianMTModel.from_pretrained(model_name).to(device)
translation_tokenizer = MarianTokenizer.from_pretrained(model_name)
# Load GPT-Neo for creative text generation
text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
text_generation_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name).to(device)
text_generation_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
# Add padding token to GPT-Neo tokenizer if not present
if text_generation_tokenizer.pad_token is None:
text_generation_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
# Set your Hugging Face API key
os.environ['HF_API_KEY'] = 'Your_HF_TOKEN' # Replace with your actual API key
api_key = os.getenv('HF_API_KEY')
if api_key is None:
raise ValueError("Hugging Face API key is not set. Please set it in your environment.")
headers = {"Authorization": f"Bearer {api_key}"}
# Define the API URL for image generation (replace with actual model URL)
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" # Replace with a valid image generation model
# Query Hugging Face API to generate image with error handling
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code != 200:
print(f"Error: Received status code {response.status_code}")
print(f"Response: {response.text}")
return None
return response.content
# Translate Tamil text to English
def translate_text(tamil_text):
inputs = translation_tokenizer(tamil_text, return_tensors="pt", padding=True, truncation=True).to(device)
translated_tokens = translation_model.generate(**inputs)
translation = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
return translation
# Generate an image based on the translated text with error handling
def generate_image(prompt):
image_bytes = query({"inputs": prompt})
if image_bytes is None:
# Return a blank image with error message
error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
d = ImageDraw.Draw(error_img)
d.text((10, 150), "Image Generation Failed", fill=(255, 255, 255))
return error_img
try:
image = Image.open(io.BytesIO(image_bytes))
return image
except Exception as e:
print(f"Error: {e}")
# Return an error image in case of failure
error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
d = ImageDraw.Draw(error_img)
d.text((10, 150), "Invalid Image Data", fill=(255, 255, 255))
return error_img
# Generate creative text based on the translated English text
def generate_creative_text(translated_text):
inputs = text_generation_tokenizer(translated_text, return_tensors="pt", padding=True, truncation=True).to(device)
generated_tokens = text_generation_model.generate(**inputs, max_length=100)
creative_text = text_generation_tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
return creative_text
# Function to handle the full workflow
def translate_generate_image_and_text(tamil_text):
# Step 1: Translate Tamil to English
translated_text = translate_text(tamil_text)
# Step 2: Generate an image from the translated text
image = generate_image(translated_text)
# Step 3: Generate creative text from the translated text
creative_text = generate_creative_text(translated_text)
return translated_text, creative_text, image
# Create a visually appealing Gradio interface
css = """
#transart-title {
font-size: 2.5em;
font-weight: bold;
color: #4CAF50;
text-align: center;
margin-bottom: 10px;
}
#transart-subtitle {
font-size: 1.25em;
text-align: center;
color: #555555;
margin-bottom: 20px;
}
body {
background-color: #f0f0f5;
}
.gradio-container {
font-family: 'Arial', sans-serif;
}
"""
# Custom HTML for title and subtitle (can be displayed in Markdown)
title_markdown = """
# <div id="transart-title">TransArt</div>
### <div id="transart-subtitle">Tamil to English Translation, Creative Text & Image Generation</div>
"""
# Gradio interface with customized layout and aesthetics
with gr.Blocks(css=css) as interface:
gr.Markdown(title_markdown) # Title and subtitle in Markdown
with gr.Row():
with gr.Column():
tamil_input = gr.Textbox(label="Enter Tamil Text", placeholder="Type Tamil text here...", lines=3) # Input for Tamil text
with gr.Column():
translated_output = gr.Textbox(label="Translated Text", interactive=False) # Output for translated text
creative_text_output = gr.Textbox(label="Creative Generated Text", interactive=False) # Output for creative text
generated_image_output = gr.Image(label="Generated Image") # Output for generated image
gr.Button("Generate").click(fn=translate_generate_image_and_text, inputs=tamil_input, outputs=[translated_output, creative_text_output, generated_image_output])
# Launch the Gradio app
interface.launch(debug=True, server_name="0.0.0.0")