24Sureshkumar's picture
Update app.py
396e877 verified
raw
history blame
5.57 kB
import streamlit as st
import torch
import openai
import os
import time
import requests
from PIL import Image
import tempfile
import clip
import torch.nn.functional as F
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
from transformers import AutoTokenizer, AutoModelForCausalLM, GPT2LMHeadModel
from rouge_score import rouge_scorer
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# OpenAI Key
openai.api_key = os.getenv("OPENAI_API_KEY")
# ---- Load MBart (Translation) ----
translator_model = MBartForConditionalGeneration.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt"
)
translator_tokenizer = MBart50TokenizerFast.from_pretrained(
"facebook/mbart-large-50-many-to-many-mmt"
)
translator_model.to(device)
translator_tokenizer.src_lang = "ta_IN"
# ---- GPT-2 ----
gen_model = GPT2LMHeadModel.from_pretrained("gpt2")
gen_tokenizer = AutoTokenizer.from_pretrained("gpt2")
gen_model.to(device)
gen_model.eval()
# ---- CLIP ----
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
# ---- Translation ----
def translate_tamil_to_english(text, reference=None):
start = time.time()
inputs = translator_tokenizer(text, return_tensors="pt").to(device)
outputs = translator_model.generate(
**inputs,
forced_bos_token_id=translator_tokenizer.lang_code_to_id["en_XX"]
)
translated = translator_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
duration = round(time.time() - start, 2)
rouge_l = None
if reference:
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
score = scorer.score(reference.lower(), translated.lower())
rouge_l = round(score["rougeL"].fmeasure, 4)
return translated, duration, rouge_l
# ---- Creative Text ----
def generate_creative_text(prompt, max_length=100):
start = time.time()
input_ids = gen_tokenizer.encode(prompt, return_tensors="pt").to(device)
output = gen_model.generate(
input_ids,
max_length=max_length,
do_sample=True,
top_k=50,
temperature=0.9
)
text = gen_tokenizer.decode(output[0], skip_special_tokens=True)
duration = round(time.time() - start, 2)
tokens = text.split()
rep_rate = sum(t1 == t2 for t1, t2 in zip(tokens, tokens[1:])) / len(tokens) if len(tokens) > 1 else 0
with torch.no_grad():
input_ids = gen_tokenizer.encode(text, return_tensors="pt").to(device)
outputs = gen_model(input_ids, labels=input_ids)
loss = outputs.loss
perplexity = torch.exp(loss).item()
return text, duration, len(tokens), round(rep_rate, 4), round(perplexity, 4)
# ---- Image Generation ----
def generate_image(prompt):
try:
start = time.time()
response = openai.images.generate(
model="dall-e-3",
prompt=prompt,
size="512x512",
quality="standard",
n=1
)
image_url = response.data[0].url
image_data = Image.open(requests.get(image_url, stream=True).raw).resize((256, 256))
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
image_data.save(tmp_file.name)
duration = round(time.time() - start, 2)
image_input = clip_preprocess(image_data).unsqueeze(0).to(device)
text_input = clip.tokenize([prompt]).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_input)
text_features = clip_model.encode_text(text_input)
similarity = F.cosine_similarity(image_features, text_features).item()
return tmp_file.name, duration, round(similarity, 4)
except Exception as e:
return None, None, f"Image generation failed: {str(e)}"
# ---- UI ----
st.set_page_config(page_title="Tamil β†’ English + AI Art", layout="centered")
st.title("🧠 Tamil β†’ English + 🎨 Creative Text + πŸ–ΌοΈ AI Image")
tamil_input = st.text_area("✍️ Enter Tamil text", height=150)
reference_input = st.text_input("πŸ“˜ Optional: Reference English translation for ROUGE")
if st.button("πŸš€ Generate Output"):
if not tamil_input.strip():
st.warning("Please enter Tamil text.")
else:
with st.spinner("πŸ”„ Translating..."):
english_text, t_time, rouge_l = translate_tamil_to_english(tamil_input, reference_input)
st.success(f"βœ… Translated in {t_time}s")
st.markdown(f"**πŸ“ English Translation:** `{english_text}`")
if rouge_l is not None:
st.markdown(f"πŸ“Š ROUGE-L Score: `{rouge_l}`")
with st.spinner("πŸ–ΌοΈ Generating image..."):
image_path, img_time, clip_score = generate_image(english_text)
if image_path:
st.success(f"πŸ–ΌοΈ Image generated in {img_time}s using OpenAI DALLΒ·E 3")
st.image(Image.open(image_path), caption="AI-Generated Image", use_column_width=True)
st.markdown(f"πŸ” **CLIP Text-Image Similarity:** `{clip_score}`")
else:
st.error(clip_score)
with st.spinner("πŸ’‘ Generating creative text..."):
creative, c_time, tokens, rep_rate, ppl = generate_creative_text(english_text)
st.success(f"✨ Creative text in {c_time}s")
st.markdown(f"**🧠 Creative Output:** `{creative}`")
st.markdown(f"πŸ“Œ Tokens: `{tokens}`, πŸ” Repetition Rate: `{rep_rate}`, πŸ“‰ Perplexity: `{ppl}`")
st.markdown("---")
st.caption("Built by Sureshkumar R | MBart + GPT-2 + OpenAI DALLΒ·E 3")